Alg 3 Functions 1 Algebra 3 Assignment Sheet Functions, Fog, Gof, Inverse, Logs (1) Assignment # 1 – Functions, Domains (2) Assignment # 2 – Composition of Functions (3) Assignment # 3 – Inverse Functions (4) Review Sheet (5) Quiz (6) Assignment # 4 – Exponential Equations (7) Assignment # 5 – Logarithms (8) Assignment # 6 – Laws of Logarithms (9) Assignment # 7 – Laws of Logarithms (10) Assignment # 8 – Calculator Logarithms (11) Review Sheet (12) TEST Alg 3 Functions 2 Functions I Vocabulary a) Function: The set of (x, y) pairs such that____________________________________ ____________________________________________________________ b) domain: c) range: Vertical Line Test Y/N Domain a) (2,4) (8,1) (8,8) _____ ______________ b) (1,-2) (3,4) (5,-2) _____ ______________ c) y = x 2 + 5x + 6 _____ ______________ d) y = |x| _____ ______________ e) y 2 = 8 _____ ______________ f) y = x _____ ______________ _____ ______________ _____ ______________ II Functions ? A. g) y = - ( x + 2 ) h) f (x) = 2 2x x −4 2 f(x) is the same as y Alg 3 Functions III Restrictions 3 1) Denominator ≠ 0 2) for even roots: 5+ x , x 2 - 3x , x -5 x≠ x≠ x x + 5x - 6 2 x≠ negative number Find the domain of the following please. a) f (x) = x−2 d) y = x 2 − x − 12 b) f (x) = c) f (x) = 2x + 5 e) y = x 2 − 2x − 63 x 2 + 8x + 15 x x−2 Alg 3 Functions IV Evaluating functions for y when given a value of x Evaluating: Substituting in numbers y = x2 + 2x + 3 f ( x) = x 2 + 2 x + 3 f (2) = 2 + 2 ( 2 ) + 3 = 11 2 4 y = f(x) f ( x) = x 2 + 2 x + 3 f ( −1) = ( −1) + 2 ( −1) + 3 = 2 2 1) f (x) = x 2 + 2x + 3 f(-1) = f(0) = 1 f = 2 2) g(x) = x 2 − 2x + 3 Find g(x + 2) 3) If f(x) = x 2 − 3 x + 1 a) find f(x + 2) c) find f(g(x)) g(x) = x - 5 b) find 3f( x) • g(2x) Alg 3 Functions 5 4 3 (1) f ( x ) = 3x − 16x − Algebra 3 Assignment # 1 2 2 7x − 28x − 13 , g ( x ) = x + 2x − 4 . Find each of the following. ( ) (a) g ( 4 ) (c) f g ( −3) (b) f ( 6 ) (d) The remainder when f ( x ) is divided by ( x − i ) (2) Determine whether each of the following defines y as a function of x. If it is a function, find the domain please. (a) y = 5x − 4 (b) 2 = x + 2x − 3 y (c) x 2 + y 2 = 1 (f) y = (g) y = (h) y = 5 − 4x 2 x − 5x − 6 x 2 x + 1 (d) y = 3x + 5 2x − 3 (i) y = 3 (e) y = x + 8 x 3 − 7x + 6 (j) y = 5 − 2x 3x + 4 3 2 x − 9x + 23x − 15 (3) Let the function f be defined by f ( x ) = x + 1 . If 2 f ( ϑ ) = 20 , find f ( 3ϑ ) . (4) Let the function f be defined by f ( x ) = x + c , where c is constant. If f ( 2 ) = 10 , find the value of the constant c. Alg 3 Functions 6 Answers (1) (a) 20 (c) 27 (b) –1 (d) –3 – 12i (f) x ≤ 5 (2) (a) Real 4 (b) Not a function (g) x ≤ − 1 or x ≥ 6 (c) Not a function (h) Real (d) x ≠ 3 (i) − 4 ≤ x ≤ 5 (e) x ≠ 1 , 2 , − 3 (j) 1 ≤ x ≤ 3 or x ≥ 5 2 (3) 28 3 (4) 8 4 Alg 3 Functions 7 Composition of Functions Functions can be added, subtracted, multiplied and divided. EXAMPLES 1. If f (x) = x 2 − 3 and g(x) = a) f(x) + g(x) d) f(3) Notes: g(3) 1 find x b) f(x) g(x) e) f(3) ÷ g(3) Let f (x) = x and g(x) = x 3 − 3 f g (x) = f(g(x)) Use composition to find the following: 1 If f (x) = x 2 − 3 and g(x) = find x b) g(x) f (x) a) f (x) g(x) If f (x) = 2x − 1, g(x)=x 2 and h(x)= 1 3x find f g h(x) c) f(x) ÷ g(x) Alg 3 Functions x−6 x+1 If f (x) = and g(x)= x−4 x+5 8 find f g DOMAIN: f ( x ) = x 2 + 8x + 15 , and g ( x ) = x + 3. If f (x) = x and g(x)= 1 x −2 2 find the domain of g f Find all values of x such that f ( g ( x ) ) = g ( f ( x ) ) if Alg 3 Functions 9 Algebra 3 Assignment # 2 Composition of Functions (1) Find each of the following numbers, given the functions below. f (x ) = h (x ) = x 2 + 1 2x − 1 ; g (x ) = 2x 2 − x − 2 ; (a) f (h (2 )) (b) g (h (1)) (c) g (f (25 )) (d) h (f (g (3))) (2) Find f (g (x )) and g (f (x )) for each of the following please. (a) f (x ) = 3x 2 + 2x − 1 g(x ) = 4x − 5 (3) Find g (x ) if f (x ) = 2x + 5 4x − 3 (b) x+2 g(x ) = 3x − 1 f (x ) = x +9 3x − 1 , and f (g(x )) = . 12x − 11 2x + 5 (4) Find f (f (x )) if f (x ) = 2x + 3 3x − 2 2 (5) Find all values of x such that f (g (x )) = g (f (x )) if f (x ) = 2x − 3x + 2 , and g(x ) = 3x − 2. Alg 3 Functions 10 Answers (1) (a) 3 (b) 4 (c) 89 (d) 26 (2) (a) f (g (x )) = 48x 2 − 112x + 64 g (f (x )) = 12x 2 + 8x − 9 (3) g (x ) = x + 2 2x − 3 (4) f (f (x )) = x (5) x = 1 (b) f (g (x )) = 17x − 1 − 5x + 11 g(f (x )) = 10x − 1 2x + 18 Alg 3 Functions 11 Inverse functions (f and f −1 ) f −1 is not 1 f NOTES: A. then If f(x) and g(x) are inverses of each other f(g(x)) = x and g(f(x)) = x (they must be one to one to be inverses) Ex. If f(x) = 2x - 3 g(x) = x+3 2 g(x) x + 3 f 2 = f(x) g [ 2x − 3] = x + 3 2 −3 = x + 3 – 3 = x 2 ( 2x − 3) + 3 2 = 2x 2 = x Alg 3 Functions 12 If f (x) = x 2 and g(x) = x , Prove f(x) and g(x) are inverses of each other B. Finding inverses • Switch the domain “x” and the range “y” • Then solve for “y” EX. f(x) = 2x - 5 y = 2x – 5 solve Ex. Find f −1 if f ( x ) = 3x − 2 switches to x = 2y – 5 x +5 this is the inverse y= 2 Domain restrictions become: Alg 3 Functions V Practice 13 −1 Find f (x) for each of the following: a) f ( x ) = x + 1 3 b) f ( x ) = ( x + 2 ) − 3 2 Find c) f ( x ) = 5x − 1 2 f (g ( x )) and e) g ( f ( x ) ) for each of the following: f ( x ) = 4x − 3 f) g(x) = x + 6 f (x) = x + 3 g ( x ) = x 2 + 2x − 4 Find each of the following numbers, given the functions below: f (x) = x + 4 , g ( x ) = 3x 2 − x + 2, h ( x ) = x2 − 2 g) f ( h ( 4 ) ) h) g ( h ( −2 ) ) j) h ( f ( 0 ) ) Alg 3 Functions 14 Algebra 3 Assignment # 3 Inverse Functions (1) Find f −1 (x ) for each of the following please. (a) f (x ) = 5x + 3 (e) f (x ) = 5x − 7 (b) f (x ) = 4 x (f) f (x ) = − (c) f (x ) = 3x + 2 5x − 2 (g) f (x ) = 3 4x + 5 (d) f (x ) = 7x + 2 2x − 7 (h) f (x ) = − 3 5x + 8 − 2 (2) f (x ) = (3) f (x ) = 4x + 5 + 2 6x + 5 , g (f (x )) = x . Find g (x ) . 2x + 3 x − 2 . Find f −1 (x ) , and sketch a graph of f (x ) and f −1 (x ) on the same set of axes. Alg 3 Functions 15 Answers (1) (a) f (b) f (c) f (d) f (2) g (x ) = −1 (x ) = x − 3 5 −1 (x ) = 4 x −1 (x ) = −1 2x + 2 5x − 3 (x ) = 7 x + 2 2x − 7 − 3x + 5 2x − 6 (e) f (f) f (g) f (h) f −1 −1 x2 + 7 (x ) = 5 x 2 − 4x − 1 (x ) = 4 −1 −1 (x ) = x3 − 5 4 (x ) = ( x + 2 )3 + − 5 8 Alg 3 Functions 16 Algebra 3 Review Worksheet (1) Find each of the following numbers, given the functions below. f (x ) = x 2 − 2x ; g (x ) = 3x ; h (x ) = x + 1 (a) f (h (3)) (b) g (h (0 )) (c) f (h (g (8 ))) (d) g (f (h (8 ))) (2) Find the domain of each of the following functions please. (a) f ( x ) = (c) f ( x ) = 24x 2 − 29x − 4 5x + 2 3 2 x − 4x + x + 6 (b) f ( x ) = (d) f ( x ) = x − 1 x2 − 9 ( x + 3)( x − 1)2 ( x − 5) (3) Find f (g (x )) and g (f (x )) for each of the following. f (x ) = 2x + 1 (a) (4) Find f g (x ) = x 2 − 3 −1 f (x ) = 2x + 3 3x − 2 g (x ) = x +1 2x − 1 (b) (x ) for each of the following. (a) f (x ) = 5x − 7 (c) f (x ) = 3x + 2 2x − 5 (b) f (x ) = 3 2 x + 5 − 4 (d) f (x ) = − 5x + 1 (5) Find all values of x for which f (g (x )) = g (f (x )) if f (x ) = x − 5 and g(x ) = 2x (6) Find g (x ) , if f (x ) = 2x + 1 6x − 1 and f (g(x )) = . x + 2 3x + 1 2 − 4x + 3 . Alg 3 Functions 17 Answers (1) (2) (a) 0 (b) 3 (c) 15 (d) 9 (a) x ≤ − 1 or x ≥ 4 (b) x ≥ 1 and x ≠ 3 (c) x ≠ − 1 , 2 , 3 (d) x ≤ − 3 or x = 1 or x > 5 8 3 (a) f (g(x )) = 2x (3) 2 − 5 , g(f (x )) = 4x 2 + 4x − 2 8x − 1 5x + 1 , g(f (x )) = −x + 5 x + 8 x+7 ( x + 4 )3 − 5 −1 −1 (b) f (x ) = (a) f (x ) = 2 5 (b) f (g (x )) = (4) (c) f (5) 15 4 −1 (x ) = 5x + 2 2x − 3 (d) f −1 (x ) = x2 − 1 5 (6) g (x ) = 3x − 1 Alg 3 Functions 18 Exponents I Review bxby = ( ) b0 = b− x = b 3b 3 bx ( ) = b bx = by , II If y then x=y 3 bx = by = bxcx = 2 = If bx = a x , x Ex. 3 x+2 =3 5 x+2 = 5 x=3 1) 2 x −1 = 32 2 2) 2 x = 216 3) 82x +1 = 64 4) 1 2x = 64 5) 27 x +1 = 6) 8x 2 −x 1 9 = 4x 2 +5 b 3 b 2 then 2 2 Ex. = 3 3 x=4 = 4 b=a Alg 3 Functions 7. 3x + 3x + 3x = 19 1 729 8. 5 ⋅ 4x + 4 x = 96 9. 3x + 3x + 3x + 3x +1 = 54 III Sketching y = 2x x y -3 -2 -1 0 1 2 3 y = 2− x x -3 -2 -1 0 1 2 3 y 1) NO negative bases 2) (0,1) on every graph 3) b ≠ 1 Alg 3 Functions 20 Algebra 3 Assignment # 4 Exponential Equations (1) Solve for x please. (a) 4 (c) 2 (e) x +1 2x − 1 ( 14 ) • = 8x (b) 5 = 8x − 7 (d) 9 8 2 x − 1 = 161 − x (f) −3 (g) x 2 = 27 8 (i) 27 2x − 10 • 27 x + 9 = 0 x+3 1 = 25 x 2 − 2x ( x2 − 1 ) (h) 2 2x x 4 3 2+ 1 = 16 − 13 • 2 x − 48 = 0 x x (j) 16 − 10 • 4 + 16 = 0 (2) Sketch a graph of each of the following. (a) y = 3 = 27 x (b) y = 3 −x Alg 3 Functions 21 Answers (1) (a) 2 (b) −5 (c) 20 (d) −1 , −3 (e) (f) ± 3 9 10 (g) 4 (h) 4 9 (i) 0 , 2 3 (j) 1 , 3 2 2 Alg 3 Functions EXPONENTIAL EQUATIONS EXTRA 22 (1) Evaluate each of the following numbers please. (a) 9 3 2 i 49 2 (b) −2 2 −1 2 + 2 (c) 2 2 2 2 2 (d) −1 i4 2 −3 − 2 −1 −2 − 3 (2) Solve each of the following equations please. (a) x (b) x (c) 8 2 3 = 25 −3 5 ( ) (x ( 1 = 8 2x + 3 (d) 8 i (e) 2 + 7 ) 3 5 =8 2 (f) x − 6x + 9 = 16 1 2x + 1 4 x +4 = 16 (g) 8 x−3 2x 3x (h) 4 (3) Sketch a graph of each of the following on the same set of axes. y=2 x and y = log 2 ( x ) ) 3 4 = 27 x − 6i8 +8 = 0 − 9i4 3x 2 + 8 = 0 Alg 3 Functions 23 Answers (1) (a) 27 (c) 1 (b) 17 (d) 6 (a) 125 (e) ±5 (b) 32 (f) 12 , –6 7 2 (2) (c) 7 (g) 1 , 2 (d) 13 (h) 0 , 1 2 8 3 3 Alg 3 Functions LOGS 24 Logs are the inverse of exponential functions. If y = 2x + 3 to find inverse x = 2y + 3 x −3 =y 2 If y = 2 x to find inverse x = 2 How do you solve for y? Logarithms are exponents and follow exponent rules. EXPONENTIAL FORM power bp = n base 33 = 27 1 5−2 = 25 3 2 =8 4x = 1 RULES number LOGARITHM FORM number log b n = p base log 3 27 = 3 1 log 5 = −2 25 log 2 8 = 3 log 4 1 = power y Alg 3 Functions EXAMPLES 25 log 3 81 = x log8 1 = c log 2 4 = y log 27 9 = d log 5 25 = z log 9 ( log 3 x ) = log8 16 = p log 6 6 = a log125 x = − 1 2 2 3 warm-up before next lesson 1) 2 -2 -2 5 − 2 4) log 2 3 -4 8 = 27 7) log .001 10 = y 2) 8 i () 1 4 5) logb 2x + 1 = 16 1 3 =27 2 x−3 3x 3) 4 − 9i4 + 8 = 0 1 )=x 27 81 6) log 3 (log 1 4 3x 2 Alg 3 Functions 26 Algebra 3 Assignment # 5 Definition of the logarithm Solve for x please. ( e )=x (1) log4 (64) = x (10) 5ln (2) log6 (x ) = 2 (11) 1 ) = −2 log x ( 25 (3) log x (9) = 2 (12) log36 (216) = x (4) log3 (x ) = − 2 (13) log 4 (x ) = − 23 (5) log25 (125) = x (14) log 8 (4 2 ) = x (6) log8 (x ) = (15) log x (6) = − 12 (7) log27 (81) = x (16) x = (8) log 7 ( 7 ) = x (17) log 4 ( log 2 (x ) ) = (9) log16 (x ) = − 43 (18) log16 ( log x (9) ) = 2 3 3 2 ln e2 3ln e 4 ( ) + 5 ( ) 1 2 1 4 Alg 3 Functions 27 Answers (1) 3 (10) 10 (2) 36 (11) 5 (3) 3 (12) 3 2 (4) 1 9 (13) 1 8 (5) 3 2 (14) 5 6 (6) 4 (15) 1 36 (7) 4 3 (16) 33 (8) 1 2 (17) 4 (9) 1 8 (18) 3 3 Alg 3 Functions 28 LAWS OF LOGS Properties of Logs I LAWS II Equations log b mn = log b m + log b n m log b = log b m − log b n n log b m = log b n If then m = n ( log =log ) log b m = n If then b n = m (log = number) log b m p = plog b m III Examples ( ) 1) log 5 2n 2 + 20 = log 5 ( 32 − 5n ) 3) log 6 48 − log 6 w = log 6 4 4) log 2 3 + log 2 7 = log 2 x 5) 1 log10 m = log10 81 2 6) 1 1 log 7 m = log 7 64 + log 7 121 3 2 Alg 3 Functions 29 7) log10 ( m + 3) − log10 m = log10 4 8) 1 2log 6 4 − log 6 8 = log 6 x 3 9) log 4 ( x + 3) + log 4 ( x − 3) = 2 10) log 2 ( y + 2) − 1 = log 2 ( y − 2 ) 11) log 3 x − log 3 5 = log 7 7 12) log 2 ( x + 1) + log 2 (3 x − 1) = log 3 243 Alg 3 Functions 30 Algebra 3 Assignment # 6 Logarithmic Equations (1) Evaluate each of the following please. log (6) (a) 7 7 (c) 4 log8 (27) log (36) (b) 5 25 log 4 (25) + 8 (d) e (2) Solve for x please. 2 ln(8) − 3ln(4) ( ) (a) log 3(2x + 1) = log 3(3x − 6) (b) log10 x 2 + 9x = 1 (c) log 5 ( x ) = 4log 5 ( 3 ) (d) log 9 ( x ) = 12 log 9 (144 ) − (e) log 3 ( 7 ) + log 3 ( x − 2 ) = log 3 ( 6x ) (f) ln (15) + ln (14 ) − ln (105) = ln ( x ) (g) log10 ( x − 1) + log10 ( x + 2 ) = log 7 ( 7 ) (h) log 3 ( x + 3) + log 3 ( x − 3) = log 3 (16 ) (i) log 8 ( x + 1) − log 8 ( x ) = log 8 ( 6x + 2 ) (j) log 3 ( x + 3) + log 3 ( 4x − 1) = log 3 (12 ) (k) log8 x 2 − x − log8 ( 2x − 5) = (l) 125x = 8log 4( 9 ) − 3log 9( 4 ) ( ) 2 3 1 log 9 3 (8) Alg 3 Functions 31 Answers (1) (2) (a) 6 (b) 6 (c) 134 (d) 1 (a) 7 (b) −10 , 1 (c) 9 (d) 6 (e) 14 (f) 2 (g) 3 (h) 5 (i) 1 (j) 1 (k) 4 , 5 (l) 2 3 3 Alg 3 Functions 32 Algebra 3 Assignment # 7 Logarithmic Equations Solve for x please. ( ) (1) log 4 x 2 − 1 − log 4 ( 5x − 11) = (2) log 6 ( 3x − 5) − log 6 x 2 − 1 = log 6 ( x ) − 1 (3) ln ( 4x + 1) + ln x 2 + x = ln (19x − 9 ) (4) log8 3x 2 − 7 − log 8 x 2 − x − 1 = (5) ln x 2 + 4 + ln ( 3x − 4 ) = ln (17x − 18) (6) 2ln 3 log 25 log 2 ( x + 1) + log 2 ( x − 5 ) = e ( ) − 3 9 ( ) (7) log 3 ( x − 5 ) = log 9 ( x + 7 ) ( ( ( ( ) ( log8 ( x ) ) (9) 2 ( log 4 ( x )) ( ) ) ( ) 2 3 ) (8) 3 (10) 1 2 2 2 ) − log 8 ( x ) − 2 = 0 + 5log 4 ( x ) = 0 ln 2 − x 2 = 3 Alg 3 Functions 33 Answers (1) 3 , 7 (2) 2 , 3 , ( reject − 5 ) (3) 1 , 34 , ( reject − 3) (4) 3 , (reject 1) ( (5) 2 , reject − 1 , 13 (6) 7 , (reject − 3) (7) 9 , (reject 2) (8) 8 , 1 4 (9) 1 , 1 32 (10) Ø ) Alg 3 Functions 34 Algebra 3 Assignment # 8 Calculator Logarithm Problems (1) Use a calculator to solve each of the following correct to 4 decimal places please. (2) Let (a) 5x = 20 (b) 43x + 1 = 91 − x (c) log 3 (18) = x (d) log 7 ( x ) = 1.432 (e) ln ( x ) = 1.432 (f) log ( x ) 5 3 = 11 (g) 0.3x > 7 (h) 2 log10 ( 2 ) = p (a) log10 ( 6 ) (c) (e) and ( ln ( x ) )2 − 5 ln ( x ) − 3 = 0 log10 ( 3) = q . Evaluate each of the following in terms of p and q. (b) log10 ( 72 ) log10 5 (d) log10 ( 90 ) log10 ( 0.5 ) (f) log10 ( 5 ) 3 3 16 (3) Simplify the following expression please. log 4 (125 ) i log 49 ( 32 ) i log 25 ( 7 ) (4) The magnitude of an earthquake is measured using the Richter scale; M= E 2 log 4.4 , 3 10 Where M is the magnitude of the earthquake, and E is the seismic energy released by the earthquake (in 15 joules). The 1989 San Francisco earthquake released approximately 1.12 x 10 joules. Calculate the magnitude of the earthquake using the Richter scale. How much energy would be released (in joules) by an earthquake which measures 8.3 on the Richter scale? Alg 3 Functions 35 Answers (1) (2) (a) 1.8614 (b) 0.1276 (c) 2.6309 (d) 16.2248 (e) 4.1871 (f) 5.1388 (g) x < −1.6162 (h) 0.6065 , 20.0855 (a) p + q (b) 3p + 2q (c) 3 q − 4 p 2 5 (d) 2q + 1 (e) −p (3) 15 8 16 (4) 7.1 , 7.079 x 10 joules (f) 1 − p Alg 3 Functions 36 Algebra 3 Review Worksheet (1) Solve for x please. (a) 9 2– x (b) 8 = 27 2x+1 2x –5 (c) 4 i 8 (i) 9 = ( ) (d) log8 3 4 ( 161 ) 1–x 4 1 2 (f) log x (16 ) = – ( ) 2 – 2 log8 (x) – 1 = 0 (m) log 2 ( x + 1) + log 2 ( 3x–1) = 5 4 3 (n) log 2 ( x – 3) – log 2 ( x+1) = log 2 ( 8 ) (g) log x (.125 ) = 3 (h) log3 log8 ( x ) (k) 3 ( log8 (x) ) (l) log5 ( 2x + 3) = log5 (1 – x ) = x (e) log 1 ( x ) = – = x log ( 4 ) log 4 (j) 3 9 – 9 3( ) = x = 16 x+1 2x log9 ( 4 ) = –1 (o) log 7 ( x + 1) + log 7 ( x ) + log 7 ( 2x + 1) = log 7 ( 30 ) (p) 4 log 4 ( 2 ) + 4 log 2 ( 6) (2) Use a calculator to solve for x. Express answers correct to 3 decimal places. x (a) 3 = 8 3x–2 (b) 2 = 51–x (c) log3 ( 2 ) = x (d) ( ln ( x ) )3 − log 4 ( x ) = 8 4 ln ( x ) = 0 Alg 3 Functions 37 Answers (1) (a) 1 8 (i) 4 (b) 19 2 (j) –14 (c) –3 (d) 2 9 (e) 2 (2) (k) 8 , (l) – 1 2 2 3 (m) 3 (f) 1 8 (n) ∅ (g) 1 2 (o) 2 (h) 2 (p) 4 (a) 1.893 (b) 0.812 (c) 0.631 (d) 1 , 7.389 , 0.135 Alg 3 Functions Algebra 3/Trig Extra Optional Review – 38 B. Solve for x: ( ) 1. 92 − x = 27 2x +1 2. 82 x −5 = 4. log 8 3 4 = x 5. log 1 x = − 4 7. log x (0.125) = 3 10. 3 log 9 4 −9 log 3 4 2 x +1 1 2 8. log 3 (log 8 x) = −1 =x 1− x 1 3. 4 ⋅ 82x = 16 6. log x 2 = − 9. 9 log 9 4 1 2 =x 11. 3(log 8 x)2 − 2 log 8 x − 1 = 0 12. log 5 (2x + 3) = log 5 (1 − x) 13. log (1 − x) + log (1 − 2x) = log 3 3 14. log 2 (x − 3) − log 2 (x + 1) = log 2 8 15. log 4 (2x + 3) = log 2 x 16. 4 log 4 2 + 4log2 6 =8 log 4 x 17. log 7 (x + 1) + log 7 x + log 7 (2x + 1) = log 7 30 C. Isolate x completely. 1. 3 x = 8 2. 23x −2 = 51− x 3. 52x + 3 = 3 x +1 Alg 3 Functions ANSWERS 1 B. 1. x = 8 39 2. x = 31 11 1 4 4. x = 3. x = -3 1 2 5. x = 2 6. x = 9. x = 4 10. x = -14 1 11. x = ,8 2 12. x = − 14. No solution 15. x = 3 16. x = 4 13. x = − 3 2 7. x = 2 9 8. x = 2 2 3 17. x = 2 (the other 3 are imaginary) log 8 = 1.893 C1. log 3 log 20 = .812 2. log 40 3 125 = −1.759 25 log 3 log 3.
© Copyright 2026 Paperzz