Lecture 18: Delta-function Scattering Phy851 Fall 2009 Delta-Function Scatterer • Any very narrow barrier can be approximated by a delta function: V ( x) = gδ ( x) • The coefficient g is then the area under V(x): g= hxw = Energy x Length g ≈ V0 w • Conditions for validity of delta-function approximation: – Incoming wave characterized by k, which gives a length-scale: λ =2!/k Thus we surely must require: w << λ k w << 1 – But the delta-function must have another length scale associated with it (from V0) • Based on units only, we find a second length scale, let’s call it `a’: h2 h2 g= = a 2 ma ma h2 a= mg `scattering length’ Do we also Need: k a << 1 ? In the limit w → 0, scattering is governed by the scattering length Delta-Function Scatterer • Scattering by the delta-function will be handled by applying boundary conditions to connect the wavefunctions on the left and right sides II I ψ 1 ( x) = Aeikx + Be − ikx ψ 2 ( x) = Ce ikx + De −ikx • RECALL: a delta-function in the potential means that ψ_(x) is discontinuous – But ψ(x) remains continuous • PRIMARY GOAL: Determine the proper boundary conditions for _ and _´ at the location of a delta function scatterer – Be able to solve `plug and chug’ problems • Secondary Goal: find Mδ for the delta potential: C = M δ D A B Delta-function Boundary Condition • All boundary conditions are derived from Schrödinger's Equation: h2 Eψ ( x) = − ψ ′′( x) + gδ ( x)ψ ( x) 2m • For the delta-potential, the trick is to integrate both sides from −ε to +ε – Then take limit as ε → 0 h2 E ∫ dxψ ( x) = − dxψ ′′( x) + g ∫ dx δ ( x)ψ ( x) ∫ 2 m −ε −ε −ε ε ε ε h2 (ψ ′(ε ) −ψ ′(−ε ) )+ gψ (0) Eψ (0)2ε = − 2m – Take ε 0: ψ ′(ε ) → ψ 2′ (0) ψ ′(−ε ) → ψ 1′(0) h2 (ψ 2′ (0) −ψ 1′(0) )+ gψ (0) 0=− 2m ψ 2′ (0) = ψ 1′(0) + R L 2mg ψ (0) 2 h R or L Example • Lets solve the delta-potential scattering problem via `plug and chug’ method: – Q: Let V(x) = g _(x). For a single incident wave with momentum k, what are the reflection and transmission amplitudes and Probabilities? ψ 1 ( x) = eikx + re − ikx ψ 2 ( x) = te ikx x=0 Drat, I can’t remember the boundary condition… x Solution: 2 1 ka) ( R= T= 2 2 1+ ( ka) 1+ ( ka) Transfer Matrix for Delta function I a c b d II x ψ I ( x) = Aeikx + Be − ikx ψ II ( x) = Ce ikx + De −ikx C = M δ D ψ 2 (0) = ψ 1 (0) 2 ψ 2′ (0) = ψ 1′(0) + ψ (0) a A B h2 a= mg C + D = A+ B 2 ik(C − D) = ik(A − B) + (A + B) a 2 C − D = A − B − i ( A + B) ka € 1 1 C 1 2 = 1 − i 1 − 1 D ka 1 A 2 − 1 − i B ka Continued 1 1 C 1 2 = 1 − 1 D 1 − i ka 1 A 2 − 1 − i B ka 1 1 1 2 M δ (ka ) = 1 − 1 1 − i ka −1 1 2 −1− i ka 1 1 1 1 1 2 2 Mδ ( ka) = 1− i −1− i 2 1 −1 ka ka i i 1− ka − ka Mδ ( ka) = i i 1+ ka ka € Vδ (x) = gδ (x) h2 a= mg € € Summary of Transfer Matrix Results: • Basic Elements: e ikL M free (kL) = 0 0 −ikL e 1 k 2 + k1 M step (k 2 , k1 ) = 2k 2 k 2 − k1 k 2 − k1 k 2 + k1 1 1 ika + 1 Mδ ( ka) = ika −1 ika −1 • € For n regions (n-1 boundaries): M = M [ n ,n −1] M [fn −1]M [n −1,n − 2 ]K M [3, 2 ]M [f2 ]M [2,1] R= M12 M 22 € € 2 T = 1− R
© Copyright 2026 Paperzz