Chapter 11 Homework 11.46 A 0.48 mole sample of helium gas occupies a volume of 11.7 L. What is the volume of 0.72 mol of helium gas under the same conditions? Solution: Itβs a gas! PV=nRT Easiest thing is to collect things that are constant on one side and only look at the things that are changing. ππ = ππ π The P and T must be constant. So only V and n are changing, soβ¦ ππ = π π π π π π = = ππππ π‘πππ‘ π π So, as long as P and T stay constant, V/n will stay constant: πππππππ ππππ‘ππ = πππππππ ππππ‘ππ ππππ‘ππ 11.7 πΏ = 0.48 πππ 0.72 πππ ππππ‘ππ = 17.55 πΏ 11.54 A bag of potato chips contains 585 mL of air at 25 C and a pressure of 765 mm Hg. Assuming the bag does not break, what will be its volume at the top of a mountain where the pressure is 442 mm Hg and the temperature is 5 C. Solution: Thereβs GASES! Itβs an Ideal Gas Law problem. Thereβs 2 ways to do this: One is to focus on just what is changing: P, V, and T are changing so n is constant ππ = ππ π ππ = ππ = ππππ π‘πππ‘ π Since PV/T is constant: πππππππ πππππππ ππππ‘ππ ππππ‘ππ = πππππππ ππππ‘ππ T has to ALWAYS be in Kelvins: πΎ = β + 273.15 πΎ = 5β + 273.15 = 278.15 πΎ πΎ = 25β + 273.15 = 298.15 πΎ P and V units wonβt matter here as long as they are the same βbeforeβ and βafterβ (765 ππ π»π)(585 ππΏ) (442 ππ π»π)ππππ‘ππ = 298.15 πΎ (278.15 πΎ) 1501 πππ»π × ππΏ πππ»π = 1.589 (ππππ‘ππ ) πΎ πΎ ππππ‘ππ = 1501 ππΏ = 944.6 ππΏ 1.589 The other way to do it is to use PV=nRT to find moles (βnβ) initially and then use the whole PV=nRT to find the new volume. In this case, all my units need to match the units of R so they cancel. π = 0.082058 765 ππ π»π πΏ ππ‘π πππ πΎ 1 ππ‘π = 1.007 ππ‘π 760 ππ π»π 585 ππΏ 1πΏ = 0.585 πΏ 1000 ππΏ ππ = ππ π (1.007 ππ‘π)(0.585 πΏ) = π (0.082058 πΏ ππ‘π )(298.15 πΎ) πππ πΎ π = 0.0241 πππππ ππ πππ The bag stays sealed, so the amount of gas should stay the same. π = 0.082058 442 ππ π»π πΏ ππ‘π πππ πΎ 1 ππ‘π = 0.582 ππ‘π 760 ππ π»π ππ = ππ π (0.582 ππ‘π)(π) = (0.0241 πππππ ) (0.082058 πΏ ππ‘π )(278.15 πΎ) πππ πΎ π = 0.946 πΏ ππ 946 ππΏ 11.90 Consider the chemical reaction: 2 H2O (l) β 2 H2 (g) + O2 (g) How many moles of H2O are required to form 1.3 L of O2 at a temperature of 325 K and a pressure of 0.988 atm? SOLUTION: Well, itβs a gas, so: ππ = ππ π What do I know about oxygen? P=0.988 atm V=1.3 L T= 325 K n=? So, I know everything but βnβ. I can find moles. ππ = ππ π (0.988 ππ‘π)(1.3 πΏ) = π(0.082058 πΏ ππ‘π )(325 πΎ) πππ πΎ π = 0.0482 πππ π2 So, I need 0.0482 mol O2. Iβm getting it from the reaction, so the balanced equation (stoichiometry) tells me how much water I need! 0.0482 πππ π2 2 πππ π»2 π = 0.0964 πππ π»2 π 1 πππ π2 11.92 Oxygen gas reacts with powdered aluminum according to the reaction: 4 Al (s) + 3 O2 (g) β 2 Al2O3 (s) How many liters of O2 gas, measured at 782 mm Hg and 25 C, are required to completely react with 2.4 mol of Al? SOLUTION: Well, itβs a gas, so: ππ = ππ π What do I know about oxygen? P=782 mmHg V=? T= 25 C n=? So, I donβt know V or n, BUTβ¦ I know I need enough oxygen to react with 2.4 mol of Al. How is Al related to oxygen? Thatβs right: balanced equation (stoichiometry): 2.4 πππ π΄π P=782 mmHg V=? T= 25 C n=1.8 mol O2 3 πππ π2 = 1.8 πππ π2 4 πππ π΄π So, I donβt know V, but thatβs the only thing I donβt know. I can find itβ¦I just need the units to cancel properly: π = 782 ππ π»π 1 ππ‘π = 1.029 ππ‘π 760 ππ π»π π = 25β + 273.15 = 298.15 πΎ π = 1.8 πππ π = 0.082058 πΏ ππ‘π πππ πΎ π =? ππ = ππ π (1.029 ππ‘π)(π) = 1.8 πππ (0.082058 πΏ ππ‘π )(298.15 πΎ) πππ πΎ π = 42.8 πΏ 11.94 Sodium reacts with chlorine gas according to the reaction: 2 Na (s) + Cl2 (g) β 2 NaCl (s) What volume of Cl2 gas, measured at 687 torr and 35 C, is required to form 28 g of NaCl? Well, itβs a gas, so: ππ = ππ π What do I know about chlorine? P=687 torr V=? T= 35 C n=? So, I donβt know V or n, BUTβ¦ I do know that I need enough chlorine to make 28 g of NaCl. Back to the reaction! 28 π πππΆπ 1 πππ πππΆπ 1 πππ πΆπ2 = 0 .2395 πππ πΆπ2 58.453 π πππΆπ 2 πππ πππΆπ P=687 torr V=? T= 35 C n=0.2395 mol Cl2 So, I donβt know V, BUT I can find it. I just need the units to cancel properly: π = 687 π‘πππ 1 ππ‘π = 0.904 ππ‘π 760 π‘πππ π = 35β + 273.15 = 308.15 πΎ π = 0.2395 πππ π = 0.082058 πΏ ππ‘π πππ πΎ π =? ππ = ππ π (0.904 ππ‘π)(π) = 0.2395 πππ (0.082058 π = 6.70 πΏ πΏ ππ‘π )(308.15 πΎ) πππ πΎ
© Copyright 2026 Paperzz