CH/VAC/0002/17/20.01.2017/D Development of a Vaccine François Meurice, MD, MPH Ambassador Vaccines Scientific Affairs & Public Health GSK Vaccines Headquarters - Belgium CH/VAC/0002/17/20.01.2017/D Disclaimer The content of this presentation is consistent with the approved product informations of the addressed GSK products History of vaccine development Slide 2 CH/VAC/0002/17/20.01.2017/D “With the exception of safe water, no other modality, not even antibiotics, has had such a major effect on mortality reduction…”1 Plotkin et al. Ch 1 in Plotkin et al. Vaccines. 6th Edition, Elsevier Saunders, 2012. History of vaccine development Slide 3 CH/VAC/0002/17/20.01.2017/D The principle of vaccination was discovered before the knowledge of pathogens and the immune system • 1796: smallpox vaccine introduced by Edward Jenner • Jenner called this practice ‘vaccination’ from the Latin word for cow, ‘vacca’ – Liquid from the pustules of cowpox was used to inoculate humans to prevent smallpox • The ‘Jenner approach’ to vaccination is considered as a primitive example of a liveattenuated vaccine Edward Jenner vaccinating his first patient. Robert Thom, Collection of the University of Michigan Health System, Gift of Pfizer Inc. UMHS.23 History of vaccine development Slide 4 Bonanni et al. Chapter 1 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 1–24 CH/VAC/0002/17/20.01.2017/D The ‘germ theory’ opened the door to a pathogenbased approach Louis Pasteur Robert Koch From ‘bad air’ and ‘body imbalance’… to …microorganisms as causes of infectious diseases Microorganisms Courtesy of CDC/Dr Ray Butler Courtesy of CDC/Janice Haney Carr/Jeff Hageman M.H.S. History of vaccine development Slide 5 Bonanni et al. Chapter 1 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 1–24 CH/VAC/0002/17/20.01.2017/D 1970s–1980s Major discoveries: Split/subunit antigens (1970s) Recombinant DNA protein antigens (1980s) Whole pathogen Split Subunit History of vaccine development Slide 6 Bonanni et al. Chapter 1 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 1–24 CH/VAC/0002/17/20.01.2017/D 1980s–1990s Major discoveries: Conjugation of polysaccharides (1980s)1 Reassortment of viral genes (1990s)2 Bovine rotavirus Human rotavirus Polysaccharide Protein Human Human/bovine reassortment 1. Strugnell et al. Chapter 3 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 61–88; 2. Bonanni et al. Chapter 1 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 1–24 History of vaccine development Slide 7 CH/VAC/0002/17/20.01.2017/D Many important vaccine technologies have been developed since the late 18th century Prostate cancer Zoster HPV Meningitis C conjugate Rotavirus** Rotavirus [Discontinued] Influenza* Pneumococcus conjugate Meningococcus ACWY conjugate Typhoid Meningitis C conjugate Varicella Typhoid Hepatitis A Hib conjugate Hepatitis B [Hepatitis B] Pertussis Hib polysaccharide Meningococcus (ACWY) Influenza Rubella Mumps Measles Polio (OPV) Dendritic cells Polio (IPV) Reassortant Pneumococcus Influenza DNA recombinant Yellow fever Diphtheria Polysaccharide conjugated Tuberculosis Tetanus Plasma derived Pertussis Split, subunit Variolation + vaccination (smallpox) Live-attenuated Inactivated Toxoid Polysaccharide Split, subunit Plasma derived DNA recombinant Polysaccharide conjugated Reassortant, live-attenuated Dendritic cells Smallpox Inactivated Plague Cholera Typhoid Rabies Polysaccharide Toxoid Live-attenuated Smallpox vaccination Variolation Smallpox eradicated 1750 1800 1850 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 *Reassortant; **Live-attenuated reassortant (human/animal species); Pandemic influenza vaccines were developed in 2009 using all History of vaccine development techniques previously developed for seasonal influenza Slide 8 Bonanni et al. Chapter 1 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 1–24 CH/VAC/0002/17/20.01.2017/D Vaccine Development : A complex system from inception to use Vaccine implementation Research Approval process/ licensure Safety and quality control Manufacturing Vaccine development Slide 9 CH/VAC/0002/17/20.01.2017/D A complex system from inception to use Vaccine implementation Research Approval process/ licensure Safety and quality control Manufacturing Vaccine development Slide 10 CH/VAC/0002/17/20.01.2017/D Economic sustainability The starting block Medical need • • • • • • Epidemiology Target population Disease burden Health economics Public perception … Medical need Scientific/technical feasibility • • • • • • Protection mechanism Virulence factors Target antigen Tests methods Animal model … Technical feasibility • Return on investment can be predicted • +/- Development partnership or other funding mechanisms • Long term investment is worth it Research on a vaccine candidate starts Vaccine development Slide 11 CH/VAC/0002/17/20.01.2017/D Key steps in vaccine design Identification and selection of appropriate antigen(s) Is the elicited immune response protective? • Understanding of disease pathogenesis • Virulence factors • Natural immune control mechanisms • • • • Is a humoral (B-cell) response elicited? Is a cell-mediated (T-cell) response elicited? Is immune memory induced? Is the elicited immune response providing adequate protection with an acceptable safety profile? History of vaccine development Slide 12 Adapted from Leo et al. Chapter 2 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 25–59 CH/VAC/0002/17/20.01.2017/D Challenges in vaccine development • Better understanding of bacterial, viral and parasitic defence mechanisms • Defining (and targeting) appropriate correlates of protection (animal model?) • Targeting the CD8 compartment if necessary? – Delivering antigen to the MHC class I pathway • Formulation issues: need for conjugation? for an adjuvant? • Compatibility of components, interference and stability • Batch-to-batch consistency • Suitable for manufacturing at large scale Leroux-Roels et al. Chapter 5 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 115–50 Vaccine development Slide 13 CH/VAC/0002/17/20.01.2017/D It takes many years to develop a vaccine Pre-clinical Clinical 5–15 years 5–15 years Postlicensure Indefinitely • Safety surveillance continues indefinitely • Additional clinical and epidemiological studies may be carried out for new indications or to assess impact and safety Leroux-Roels et al. Chapter 5 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 115–50 Vaccine development Slide 14 CH/VAC/0002/17/20.01.2017/D Vaccine development: pre-clinical evaluation Antigen production Antigen/adjuvant compatibility* Pre-clinical evaluation Adjuvant selection based on desired response and previous experience* Immune read-out development Non-clinical toxicology Antigen selection Host–pathogen interaction Protective immune mechanisms *If adjuvant is needed Leroux-Roels et al. Chapter 5 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 115–50 Vaccine development Slide 15 CH/VAC/0002/17/20.01.2017/D Clinical studies Early Phase Phase I N=20–80 Phase II N=>100s Phase III N=1000s–10,000s Phase IIIb/IV Safety Safety Safety Safety Immunogenity Immunogenicity Immunogenicity Proof of concept Efficacy Licensure N=millions Effectiveness New indications Dose ranging Safety evaluation: • Local • Systemic • AE • SAE Pharmacovigilance AE, adverse event; SAE, severe adverse event Leroux-Roels et al. Chapter 5 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 115–150; Douglas, Samant et al. Chapter 3 in: Plotkin et al. Vaccines, 6th edition, Philadelphia, Saunders, 2012, pp. 33–43; Baylor, Marshall. Chapter 73 in: Plotkin et al. Vaccines, 6th edition, Philadelphia, Saunders, 2012, pp. 1427–46 Vaccine development Slide 16 CH/VAC/0002/17/20.01.2017/D Vaccine development steps: post-licensure evaluation Phase IIIb, IV studies New indications Vaccine implementation Effectiveness and long-term safety Vaccine licensure Safety surveillance systems Health-economics assessment Impact of vaccination Leroux-Roels et al. Chapter 5 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 115–50 Vaccine development Slide 17 CH/VAC/0002/17/20.01.2017/D Challenges in vaccine development Measuring protective effects • Immunological correlates of protection not always available • Difficult to define clinical end-points for diseases with complex host–pathogen interactions or pathogenesis • Difficult to measure protective effect against chronic conditions and cancers when they take a very long time to develop after infection Leroux-Roels et al. Chapter 5 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 115–50; Harper. Prophylactic human papillomavirus vaccines to prevent cervical cancer: Review of the Phase II and III trials . Therapy 2008;5(3):313–324. Vaccine development Slide 18 CH/VAC/0002/17/20.01.2017/D A complex system from inception to use Vaccine implementation Research Approval process/ licensure Safety and quality control Manufacturing Vaccine development Slide 19 CH/VAC/0002/17/20.01.2017/D Vaccine safety assessment Vaccine development Slide 20 CH/VAC/0002/17/20.01.2017/D Pre-clinical development Safety assessment, monitoring and risk minimisation Preclinical assessment • • • • Toxicology studies: − In vitro and in vivo (animal) studies − Single dose toxicity − Repeated dose toxicity − Local tolerance, genetic toxicology − Reproductive toxicology (if applicable) − Teratogenicity − General safety profile Mode of action Dose ranging Quality control testing Leroux-Roels et al. Chapter 5 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 115– Vaccine development 50; Garçon et al. The safety evaluation of adjuvants during vaccine development: The AS04 experience. Vaccine 2011;29(27):4453–4459 Slide 21 CH/VAC/0002/17/20.01.2017/D Clinical development Safety assessment, monitoring and risk minimisation Clinical Phase I–III assessment* • Clinical trials (respecting all GCP standards) • Local and systemic solicited symptoms • Unsolicited symptoms (common and uncommon AEs) • SAEs and AESI** evaluation • Overall safety analysis • Dose and schedule selection • GLP/GMP quality controls testing *Note: Other preclinical testing, e.g. toxicology and mode of action studies, continue in parallel with the clinical assessment; **if requested; GCP, good clinical practice; AESI, adverse events of special interest; GMP, good manufacturing practice; GLP, good laboratory practice Leroux-Roels et al. Chapter 5 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 115–50; Garçon et al. The safety evaluation of adjuvants during vaccine development: The AS04 experience. Vaccine 2011;29(27):4453–4459 Vaccine development Slide 22 CH/VAC/0002/17/20.01.2017/D Clinical safety evaluation: reporting of adverse events in phase I–III studies Example: AS04/HPV-16/18 Dose 1* Month 0 Solicited symptoms Unsolicited symptoms Dose 2* Month 1 7 days 30 days 7 days 30 days Dose 3* Month 6 Long-term *3 dose schedule Cervarix® (see www.swissmedicinfo.ch for follow-up dosage, application) 7 days 30 days Throughout study SAEs Pregnancies* MAEs & NOCDs** • MAEs, i.e. any AE resulting in an unscheduled interaction with a healthcare provider, and NOCDs (e.g. immune-mediated disorders) • Investigators invited to report SAEs they assess as related to candidate vaccine indefinitely *Pregnancies, if relevant, followed up until outcome; **Specific to HPV programme; MAE, medically attended adverse event; NOCD, new onset chronic disease; HPV, human papillomavirus Verstraeten et al. Analysis of adverse events of potential autoimmune aetiology in a large integrated safety database of AS04 adjuvanted vaccines. Vaccine 2008;26(51):6630–6638; Leroux-Roels et al. Chapter 5 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 115–150; Descamps et al. Safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine for cervical cancer prevention: a pooled analysis of 11 clinical trials.Hum Vaccin 2009;5(5):332–340; Product information Cervarix®, www.swissmedicinfo.ch, accessed January 17, 2016 Vaccine development Slide 23 CH/VAC/0002/17/20.01.2017/D At registration and post-licensure Safety assessment, monitoring and risk minimisation At registration stage • • • Pregnancy registries (if applicable) Post-approval safety surveillance/studies Additional requests for analysis Post-licensure • • • • • • Phase IIIb/IV studies Sustained pharmacovigilance surveillance, rare events Cases/cluster detection Quantitative and qualitative analysis Overall on-going safety evaluation Periodic safety reports Leroux-Roels et al. Chapter 5 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 115–50; Garçon et al. The safety evaluation of adjuvants during vaccine development: The AS04 experience. Vaccine 2011;29(27):4453–4459 Vaccine development Slide 24 CH/VAC/0002/17/20.01.2017/D Challenges in vaccine development Safety assessment Concerns about vaccines and immune mediated disorders • Benefit/risk ratio acceptance different for public health needs and individuals • A potential safety concern that needs to be addressed for new and old vaccines • Continued safety monitoring is crucial • Increasing knowledge on how vaccines immune response works can provide reassurance • Evaluation of temporal associations of adverse events after vaccination • Need to compare frequency of rare adverse event after vaccination with incidence in the unvaccinated population (expected cases) Leroux-Roels et al. Chapter 5 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 115–50; Spier. Perception of risk of vaccine adverse events: a historical perspective.Vaccine 2001; 20(S1):S78–S84 Vaccine development Slide 25 CH/VAC/0002/17/20.01.2017/D Safety and effectiveness/Impact vaccine studies • Vaccine safety studies measure predictable (e.g. fever, anaphylaxis) and uncommon (e.g. GBS, intussusception) or unpredicatble (e.g. narcolepsy) adverse reactions (including vaccine failure = lack of effectiveness) • Effectiveness / Impact studies assess reduction in disease incidence in routine medical practice – Changing epidemiology – Healthcare use, societal impact – Coverage, Compliance, Herd protection – Cold chain, storage… Vaccine development Slide 26 CH/VAC/0002/17/20.01.2017/D A complex system from inception to use Vaccine implementation Research Approval process/ licensure Safety and quality control Manufacturing Vaccine development Slide 27 CH/VAC/0002/17/20.01.2017/D Vaccine bulk manufacturing and formulation Vaccine development Slide 28 CH/VAC/0002/17/20.01.2017/D Specifics of the vaccine manufacturing process • Long production time • Flu vaccine, 4-6 months; Pneumococcal >1 year • Hexavalent DTPa-based: up to 2 years • Inherent variability of the biological systems • Long release time • Biological testing (in-vivo / in-vitro): numerous tests and lengthy documentation for release of a lot: cost, resource, capacity – this can take up to 70% of the total manufacturing time! • Release needed for each single batch supplied (20–50% of this release time is with the release authority) International Federation of Pharmaceutical Manufacturers and Associations. The complex journey of a vaccine. 2014. Available at: http://www.ifpma.org/resourcecentre/the-complex-journey-of-a-vaccine-2/. Accessed January 2017 Vaccine development Slide 29 CH/VAC/0002/17/20.01.2017/D Vaccine manufacture is a multi-step process Formulation & Filling Packaging & Distribution Growing the organism Formulating the vaccine Packaging the vaccine Purifying the antigen Filling the vaccine Freezedrying Storing the vaccine Release Distribution (Internal & by the authorities) Leroux-Roels et al. Chapter 5 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 115–50; International Federation of Pharmaceutical Manufacturers and Associations. The complex journey of a vaccine. 2014. Available at: http://www.ifpma.org/resource-centre/the-complex-journey-of-a-vaccine-2/. Accessed January 2017 Quality Assurance & Quality Control Antigen manufacture Vaccine development Slide 30 CH/VAC/0002/17/20.01.2017/D A complex system from inception to use Vaccine Implementation Research Approval process/ licensure Safety and quality control Manufacturing Vaccine development Slide 31 CH/VAC/0002/17/20.01.2017/D Vaccine approval process by regulatory authorities Vaccine development Slide 32 CH/VAC/0002/17/20.01.2017/D Main regulators deliver guidelines, directives, technical reports, monographs, pharmacopeia BGTD HPFB Inspectorate MHRA FDA EMA WHO PMDA Japan Drug Controller of India, MOH & Welfare Singapore MOH NRAs WHO TGA - Therapeutic Goods Administration International Conference of Harmonisation BGTD, Biologics and Genetic Therapies Directorate; HPFB, Health, Product and Food Branch; MHRA, Medicines and Healthcare products Regulatory Agency; EMEA, European Medicines Agency; PMDA, Pharmaceuticals and Medical Devices Agency; MOH, Ministry of Health Vaccine development Slide 33 CH/VAC/0002/17/20.01.2017/D Vaccine approvals outside EU and USA • Approval in countries outside the EU and USA is country-specific, based on national regulatory authorities (NRAs) • Approval in countries without functional NRAs: – WHO has a system for prequalification of vaccines destined for countries without functional NRAs – WHO has a service to determine the acceptability of vaccines from different sources for supply to UNICEF, GAVI and other agencies that purchase vaccines UNICEF, United Nations Children’s Fund; GAVI, Global Alliance for Vaccines and Immunisation Leroux-Roels et al. Chapter 5 in: Garçon et al. Understanding Modern Vaccines, Perspectives in Vaccinology, Vol 1, Amsterdam, Elsevier, 2011, pp. 115–50 Vaccine development Slide 34 CH/VAC/0002/17/20.01.2017/D What is the role of the NRA* after registration? Inspections at regular intervals Lot-to-lot release Review of commitments Postlicensure activities Postlicensure surveillance NRA: National Regulatory Authority Regulatory actions Vaccine development Slide 35 CH/VAC/0002/17/20.01.2017/D A complex system from inception to use Vaccine Implementation Research Approval process/ licensure Safety and quality control Manufacturing Vaccine development Slide 36 CH/VAC/0002/17/20.01.2017/D Vaccine introduction and implementation Vaccination calendar National/ Supranational recommendations Risk groups Universal mass vaccination Catch-up vaccination Vaccine development Slide 37 CH/VAC/0002/17/20.01.2017/D Political and Public Health Priorities A disease is a public health priority when: • There is a high burden of disease and serious consequences for the health of the population, • The scientific community, political authorities and general population consider it a serious public health problem and • There is a consensus among opinion-makers, politicians, technical personnel and the public that this problem should be solved PAHO Field Guide: Introduction and Implementation of new vaccines 2010. Scientific and Technical Publication N°632. Accessed on 22/12/2016 at: http://new.paho.org/hq/dmdocuments/2010/FieldGuide_NewVaccines_1stEd_e.pdf?ua=1 Vaccine development Slide 38 CH/VAC/0002/17/20.01.2017/D Factors to consider for vaccine introduction Political and Technical Political and public health priorities Burden of disease Comparison with other interventions (including other vaccines) Vaccine safety, efficacy and quality Economic and financial criteria New vaccine Feasibility and Scheduling Characteristics of vaccine presentation Vaccination program performance Availability of vaccine supply Introduction Decision at Country Level PAHO Field Guide: Introduction and Implementation of new vaccines 2010. Scientific and Technical Publication N°632. Accessed on 22/12/2016 at: http://new.paho.org/hq/dmdocuments/2010/FieldGuide_NewVaccines_1stEd_e.pdf?ua=1 Vaccine development Slide 39 CH/VAC/0002/17/20.01.2017/D Summary • Development and assessment of vaccines is constantly improving and evolving • The aim is production of robust evidence to assess benefit–risk profiles • From concept to licensure, it takes many years to develop a vaccine • Every step of development and formulation follows standard procedures and is carefully monitored • Vaccine licensure is performed under the control of regulatory agencies Vaccine development Slide 40 CH/VAC/0002/17/20.01.2017/D Every year… Equivalent to the population of Paris2 2.5 million deaths are averted through immunisation1 750,000 children are saved from disability2 Today, 30 diseases can be prevented or their incidence lowered through vaccination1,3,4 1. WHO, UNICEF, World Bank. State of the world’s vaccines and immunization, 3rd edition. Geneva, 2009; 2. Ehreth. The value of vaccination: a global perspective. Vaccine 2003; 21(27-30):4105-4117; 3. Gray GC. Chapter 9 in: Plotkin et al. Vaccines, 6th edition, Philadelphia, Saunders, 2012, pp. 113–27; 4. CDC. Vaccine information statements. Available at: http://www.cdc.gov/vaccines/hcp/vis/index.html?s_cid=cs_000 (accessed October 2014) History of vaccine development Slide 41 CH/VAC/0002/17/20.01.2017/D Adverse event reporting For reporting of adverse events after use of a GSK product please report to: [email protected] Vaccine development Slide 42 CH/VAC/0002/17/20.01.2017/D Short product information (GSK product) Cervarix®, vaccin HPV-16/HPV-18 PA: Protéines L1 de papillomavirus humain des types 16 et 18. I: Prévention des lésions précancéreuses et des cancers du col de l’utérus dus aux HPV-16 et HPV-18 chez les jeunes filles et les femmes à partir de l’âge de 10 ans. P/M: Doses de 0,5 ml chacune par voie intramusculaire. Âge de 10-14 ans: 2 doses (mois 0, 6) ou 3 doses (mois 0, 1, 6). A partir de 15 ans: 3 doses (mois 0, 1, 6). Non recommandé chez les filles de moins de 10 ans. CI: Hypersensibilité à l’un des composants du vaccin, maladie fébrile aiguë sévère. MG/P: Ne pas injecter par voie intravasculaire ou intradermique; réactions anaphylactiques; réaction psychogène à l’injection (p.ex. syncope); précaution en cas de thrombocytopénie ou trouble de la coagulation; pas d’effet thérapeutique (pas indiqué pour le traitement du cancer du col de l’utérus ou des néoplasies intra-épithéliales); protection limitée contre d’autres types d'HPV (maintenir les mesures de précaution appropriées contre les maladies sexuellement transmissibles); ne remplace pas le dépistage régulier du cancer du col de l’utérus; réponse immunitaire à la vaccination peut être insuffisante en cas d’immunodéficience (par ex. due à un traitement immunosuppresseur). IA: Administration simultanée possible avec dTpa, dTpa-IPV, hépatite A/B en des sites d’injection différents. G: Femmes enceintes et femmes prévoyant une grossesse: ne vacciner qu’après la fin de la grossesse. EI: très fréquents: douleurs, rougeur, gonflement au site d’injection; céphalées; myalgie; fatigue; fréquents: symptômes gastro-intestinaux, dont nausées, vomissements, diarrhée, douleurs abdominales; démangeaisons/prurit, éruption cutanée, urticaire; arthralgie; fièvre (≥ 38°C); occasionnels: entre autres, lymphadénopathie (généralisée, sévère dans des cas isolés), induration, paresthésie au site d’injection; surveillance post-commercialisation: réactions allergiques incluant œdème de Quincke et réactions anaphylactiques. Cons.: Conserver entre +2°C et +8°C. Ne pas congeler. Emb.: seringue préremplie (aiguilles séparées), x1 et x10. Cat. de remise: B. Mise à jour de l’information: octobre 2015. GlaxoSmithKline AG. Une information détaillée est disponible sur www.swissmedicinfo.ch. Veuillez annoncer tout effet indésirable à [email protected]. Vaccine development Slide 43 CH/VAC/0002/17/20.01.2017/D Thank you for your attention ! Vaccine development Slide 44
© Copyright 2026 Paperzz