SUPPLEMENTARY PROBLEMS 1. Rewrite the following IVPs as first order systems: (a) y y 0, y(0) 1, y(0) 0 , (b) x x 2x 1 2t, x(0) 1, x(0) 1 , (c) y 2y y 2y 1 2t, y(0) 1, y(0) 1, y(0) 0 , (d) y t 2 y z2 , z t z y3 , y(0) 0, y(0) 1, z(0) 1, z(0) 0 . Write the following IVP as an autonomous system with two components: (e) u 12t 4 u sin(t), u(0) . 2. What values should the parameters a and b have so that the following LMMs are consistent: (a) y n 2 ay n 1 2y n hbf n , (b) y n 2 y n 1 ay n h(f n 2 bf n ) . 3. Determine the order and error constant of the following LMMs: (a) 3yn 2 4yn 1 yn 2hf n 2 , (b) yn 2 yn 1 h( 125 f n 2 23 f n 1 121 f n ) . What value of produces the highest order: (c) yn 2 yn h(f n 1 (2 )f n ) . 4. Evaluate the order of accuracy of the Verlet algorithm yn 1 2yn yn 1 h 2f n for the second order ODE y f . 5. Investigate the consistency and zero-stability of the two-step LMMs: (a) y n 2 4y n 1 3y n 2hf n , (b) 3yn 2 4yn 1 yn ahf n , a R , (c) y n 3 y n 2 y n 1 y n h(f n 3 f n 2 f n 1 f n ) , (d) yn 2 (b 1)yn 1 byn 14 h((b 3)f n 2 (3b 1)f n ), b R , 6. Show that the region of absolute stability of the backward Euler method u n 1 u n hf n 1 is given by 1 k 1 . By writing k x iy , show that this corresponds to the exterior of the circle (x 1)2 y2 1 . 7. Find the interval (on the real k h axis) of absolute instability of the LMMs: (a) y n 2 y n 12 h( f n1 3f n ) , (b) y n 2 y n 1 12 h(3f n1 f n ) . 8. What condition must the step length h satisfy in order to achieve absolute stability when Euler’s method is applied to the following systems: (a) u (t ) v(t ) , v(t ) 200u(t ) 20v(t ) . 1 1 (b) u u. 1 1 (c) u 8(u v), v 18 (v 5), u(0) 100, v(0) 20. 9. The scalar ODE y(t ) f (t, y(t )) with y(0) y 0 may be written in the form of two autonomous ODEs Y(t ) F(Y(t )) , where u ( t ) Y( t ) , v( t ) 1 F(Y( t )) f (u, v) with u(0) 0 , v(0) y 0 . Show that the condition c j i 1 a i, j arises naturally when we s ask for a RK method to produce the same numerical approximation when applied to either version of the problem. 10. Show that the RK method applied to the IVP, y 1, y(0) 0, will not converge unless s b i 1 i 1. 11. Show that the following RK methods are consistent and find their order of accuracy: (a) yn 1 yn 12 h(k1 k 2 ), k1 f (t n , yn ), k 2 f (t n h, yn hk1 ) . (b) yn 1 yn 13 h(2k1 k 2 ), k1 f (t n , yn ), k 2 f (t n 23 h, yn 23 hk1 ) .
© Copyright 2026 Paperzz