Like Terms Combining Like Terms

Algebra/Geometry Blend
Name
Unit #1: Algebraic Foundations
Lesson 10: Addition & Subtraction of Polynomials
Period
Date
[page 1]
Go to page and “play” the “game” for some extra practice
on sorting & combining like terms.
[page 2]
Like Terms
Have you ever heard the saying, “You can’t add apples and oranges”? What
does that concept mean when adding or subtracting polynomial expressions?
Think back to the sorting game you played at the introduction of the lesson.
Well, in a lot of ways, adding and subtracting polynomials is a lot like sorting!
REMEMBER! Like terms MUST have the same
&
Click ‘begin’ on page 2 to sort like terms
Combining Like Terms
What does it mean to “combine like terms”? It’s simple! To combine like terms, you
combine the
, and the variable part stays
the
same.
Let’s see how a few of the like terms you just matched are combined together!
Try to combine the like terms on your own. Then, select the Check Your Answer button to
see the correct answer.
#1
2xy + 3xy
#2
5y – 3y
[page 3]
Go to the bottom of the page and click on
for some more practice
#3
7x4y5 + 9x4y5
[page 4]
Subtracting Polynomials
Ok. There are TWO ways we can deal with problems involving subtraction.
Simplify
(4x – 7) – (13x + 2)
Keep-Change-Change
Distribution
(4x – 7) – (13x + 2)
(4x – 7) – (13x + 2)
Go to the bottom of the page and click on
for some more practice
[page 6]
Work out each problem in the space provided below and check yours answer online!
#1
(x + 5) + (x + 2)
#2
(x – 7) – (x – 5)
#3
(a3 + 4a2 – 7) + (3a3 – 2a2 + 1)
#4
(x2 – 4) + (x2 + 7x – 9)
#5
(x + 3) – (x3 + 2x – 8)
#6
A rope that is (7x + 2y − 3z) yards long is cut into three pieces. The first piece is (3x)
yards long, and the second piece is (x − 5y) yards long. Which expression represents
the length, in yards, of the third piece?
#7 Dave, Carlos, Moesha bought music CDs at a discount sale, Dave bought (x) CDs,
Carlos bought (x + 17) CDs, and Moesha bought (x + 17 − y) CDs. Which expression
represents the total number of CDs they bought?
#8
(x + 7) − (4x2 − 3x + 12)
#10 (x2 − 1) − (2x2 − 3x + 1)
#9
(a3 + 4a2 − 7) − (3a3 − 2a2 + 1)