بسم هللا الرحمن الرحيم قياس التصريف في القنوات المفتوحة Discharge Measurement-Open Chanal-3rd Class Dr. Sataa A. Al-Bayati (09-10) Why we convert units, & when? e.g. s → min → hr m3/s → L/s Dictionary: Orifice = فتحة, weir = سد غاطس, notch = ثلمة 1. Orifice in Open Tanks (free orifice): Fig. (1) Free orifice ____ Q = Cd A √2gH --- (1) Where: Cd = discharge coefficient = 0.6 Range (0.6 & 0.8) A = cross-sectional area of orifice H = difference in elevation from water surface to centroid of orifice shape (circle, square, etc). Example (1): 15cm circular orifice in a canal. If the orifice center is lower than water surface by 1m, find the flow rate. 1 Solution: ____ Q = Cd A √2gH __________ 2 Q = 0.6 × (π/4) (0.15) × √2 × 9.81 ×1 = 0.047m3/s = 47L/s. ********* 2. Weirs) (السذود الغاطسة: Used in water &wastewater treatment plant. a. Sharp-crested weir)(سذ غاطس حاد الحافة Fig. (2) Sharp- crested weir __ Q = Cd √2g L. H3/2 __ Q = Cd √2g (L – 0.2H) H3/2 --(2a)- suppressed --(2b)- contracted(rectangular notch) for H/P ≤ 10 Cd = 0.4 + 0.05(H/P) or Cd = 0.745 Where: L = weir length = open channel width H = height of water surface above weir top. 2 Example (2): Water flows in a rectangular canal at velocity = 3fps & depth of 1 ft. Determine height of a sharp-crested suppressed weir that must be installed to raise water depth upstream of the weir to 4 ft. Take Cd =0.745. Solution: __ Q = AV = Cd √2g L. H3/2 ____ = (L × 1)(3) = 3L = 0.745√64.4 L H3/2 H3/2 = 0.502 H = 0.63ft P = 4 – 0.63 = 3.37ft. **************** Example (3): Laboratory measurement made on a contracted sharp crested weir shows a discharge of 0.25m3/s under a head of H=0.2m. Determine the discharge coefficient in the given units. Contracted length = 1.56m. Solution: __ Q = Cd √2g (L – 0.2H) H3/2 ____ 0.25 = Cd √19.62 (1.56 – 0.2×0.2) (0.2)3/2 Cd = 0.415. ********** Application: Time of emptying Tank over a Rectangular Notch: Fig. (3) Water elevations in rectangular notch 1 t 3A H2 1 H1 ----(3) Cd L 2 g Where: t = time required to lower water level from H1 to H2, sec A = surface area of the tank, 3 L = notch width = contracted length, Cd = discharge coefficient, H1 = water level at t1 = 0, H2 = water level at t2 = t. Example (4): There is a 100×100m2 tank with a 2m long rectangular notch. Find the required time to lower water level from 2m to 1m elevation, if Cd = 0.6. Solution: 1 t 3A H2 1 H1 Cd L 2 g 1 t 3100 100 1 1 2 0.6 2 19.62 = 1653sec = 27.6min. *********** b. V- Notch-Crested Weir(Triangular Weir) Used for low flow. Fig. (4) Triangular Weir 8 Q C d 2 g tan H 2 15 2 5 ----(4) Where: Cd =0.57-0.6 θ = notch angle, range (22.5 - 90o) H = head of water over invert weir, ft, range (0.2 - 2ft) 4 Example (5): V- notch with θ = 90o and water level above invert weir by 0.22m and Cd =0.6. Calculate the flow rate. Solution: __ Q = (8/15) Cd √2g tan(θ/2) H5/2 _____ Q = (8/15) (0.6) √19.62 × (1) × (0.22)5/2 = 0.032m3/s = 32L/s. ********* Applications: Time of Emptying a Tank through a Triangular Notch Fig. (5) Water elevations in V-notch 1 1 3/ 2 3/ 2 H2 H1 2 t A 3 8 K 2 g tan / 2 15 --- (5) Example (6): 25×15m2 tank with a 90o triangular notch. Find the required time to lower water level from 1.5m to 0.5m elevation. Use Cd = 0.62. Solution: 1 1 3/ 2 3/ 2 2 0.5 1.5 t 25 15 3 8 0.62 19.62 tan 45 o 15 = 390sec = 6.5min. *************** 5 c. Trapezoidal Notch Fig. (6) Trapezoidal Notch __ __ 3/2 Q = 2/3 × Cd × √2g L H + 8/15 × Cd × √2g tan(θ/2) H5/2 -- (6) Example (7): A trapezoidal notch with θ = 60o and base width = 30cm, water level above invert weir by 16cm and Cd = 0.62. Calculate the discharge. Solution: __ __ 3/2 Q = 2/3 × Cd × √2g L H + 8/15 × Cd × √2g tan(θ/2) H5/2 ____ ____ 3/2 Q = 2/3 × (0.62)* √19.62 (0.3) (0.16) + 8/15 * (0.62)* √19.62 (1/√3) (0.16)5/2 = 0.035 + 0.009 = 0.044m3/s = 44L/s. ********** d. Cipolletti Sharp Crested Weir It is a special case of trapezoidal notch. Used in irrigation canals. 28o Fig. (7) Cipolletti Sharp Crested Weir 6 _ Q = 3.367 L H3/2 (EI) --- (7) Example (8): A Cipolletti weir with base width = 1ft. Water level above invert weir by 0.5ft. Find the flow rate. Solution: Q = 3.367 L H3/2 Q = 3.367 (1) (0.5)3/2 = 1.19ft3/s. ************ e. Broad-Crested Weir)(سذ غاطس عريض Fig. (8) Broad-Crested Weir __ Q = 0.385Cd L √2g H3/2 --- (8) Where: Cd = discharge coefficient with range (0.85 – 1.05), L = weir length, H = height of water surface above weir top. b = weir width. If b ≥ 2H → broad crested weir 7 f. Submerged Weir)(سذ غاطس مغمور Qfree Qsubmerged Fig. (9) Submerged Weir Free discharge: __ Q1 = 2/3 Cd1 √2g L (H1 – H2 )3/2 Submerged discharge: __________ Q2 = Cd2 L H2 √2g(H1 – H2 ) --(9.a) --(9.b) Total discharge = Q1 + Q2 Where: H1 = upstream water surface above weir top, H2 = downstream water surface above weir top, Cd1 & Cd2 = discharge coefficients. Example (9): A 60cm high submerged weir in a 2m width channel. Upstream water depth is 1.1m and downstream water depth = 0.8m. Calculate the discharge if Cd1=0.6 and Cd2 = 0.8. Solution: Free discharge: __ Q1 = 2/3 Cd1 √2g L (H1 – H2 )3/2 ____ Q1 = 2/3 (0.6) √19.62 × 2 × (0.5 – 0.2)3/2 = 0.582m3/s. 8 Submerged discharge: __________ Q2 = Cd2 L H2 √2g(H1 – H2 ) ________ Q2 = 0.8 × 2 × 0.2 √19.62(0.3) = 0.776m3/s. Total discharge: Q = Q1 + Q2 = 0.582 + 0.776 = 1.358m3/s. ************ g. Streamlined Triangular Weir) (سذ غاطس مثلث بخطوط أالنسياب: V2/2g Fig. (10) Streamlined Triangular Weir 3/2 Q = Cd (2/3) _ √g L E3/2 -- (10) Where: L = weir length E = total head = h1 + V2/2g h1 = upstream head h2 = downstream water depth Example (10): Find the discharge over a streamlined triangular weir in a rectangular canal. If weir height = 2ft, canal width = 5ft, upstream water level = 0.5ft above weir crest, and Cd = 0.99. 9 Solution: _ 3/2 Q = Cd (2/3) √g L E3/2 ___ 3/2 Q = 0.99(2/3) √32.2 × 5 × [0.5 + Q2/2(32.2)(5×2.5)2]3/2 = 15.29(0.5 + 9.94 × 10-5 Q2)3/2 By trial & error, Q = 5.45cfs. ********** 3. Sluice & Tainter Gate (Underflow Gates): They used for controlling water in canals, flumes, & on spillways. Fig. (11) Underflow Gates ____ Q = Cd L Y √2gH -- (11) Where: Cd = discharge coefficient, from Fig. L = gate width H = upstream water depth y = gate opening y3 = submergence depth Fig.(12): Flow coefficients for Sluice gate. Free: find H/y =? → Free curve → Cd Submergence: find H/y, & y3 /y → H/y cross y3 /y → Cd 10 H/y Fig.(12) Discharge coefficients for sluice gate. Example (11): Estimate the flow under a sluice gate 3m wide. The upstream depth is 5.50m, & the gate opening is 60cm with no downstream submergence. Solution: H/y = 5.5/0.6 = 9.17 Fig.(12) free flow curve Cd = 0.575 ____ Q = Cd L y √2gH ________ Q = 0.575 × 3 × 0.6 √19.62×5.5 = 10.75m3/s. ************ 11 4. Venture Flume (Parshall Flume))(قناة فنجوري: Fig.(13) Venture Flume 0.026 Q = 4B H1.522B (EI) -- (12) Where: Q = flow rate, cfs B = throat width, ft H = upper head, ft. Example (12): What is the flow through a Parshall flume with a throat width of 2ft & max. free flow head of 2.5ft? Solution: 0.026 Q = 4B h1.522B 0.026 1.522(2) Q = 4 × 2 × (2.5) = 33.4cfs. Current meter Used to measure flow velocity in rivers & canals. Fig.(14) price current meter Reference: - Roberson, J.A., et.al., “ Hydraulic Engineering”, 2nd Ed, John Wiley & Sons. Inc., New York 12 - Chow, V. T., 1959, “ Open-channel Hydraulics” Japan. H.W: 05-06 M Ex.1: d = 15 + 1(no.) = 16cm E H = 1 + 0.1(no.) = 1.1m Ex.2: v = 3 + 0.05(no.) = 3.05ft/s y = 1 + 0.1(no.) = 1.1ft Ex.3: Q = 0.25 + 0.1(no.) = 0.26cfs H = 0.2 + 0.01 = 0.21m Ex.4: A = 100+5no. x 100+5no.m2 = 105 + 105m2 L = 2 + 0.1(no.) = 2.1m Ex.5: H = 0.22 + 0.01(no.) = 0.23m Ex.6: A = 25 x 15m2 = 26 x 26m2 θ = 60o H = 0.22 + 0.01(no.) = 0.23m θ = 60o A = 25 x 15m2 = 26 x 16m2 Ex.7: H = 16 + 1(no.) = 17cm θ = 90o H = 16 + 1(no.) = 17cm Ex.8: L = 1 + 0.1(no.) = 1.1ft H = 0.5 + 0.01(no.) = 0.51ft Ex.9: 60 – 1(no.) = 59cm 60 → 70cm y = 1.1 + 0.01(no.) = 1.11cm 13 Ex.10: P = 2 + 0.1(no.) = 2.1ft Ex.11: 5.5 + 0.1(no.) = 5.6m Ex.12: B = 2 + 0.1(no.) = 2.1ft h = 0.5 + 0.1(no.) = 0.6ft 0.6 + 0.01(no.) = 0.61m H = 2.5 + 0.1(no.) = 2.6ft H.W: 06-07 M Ex.1: d = 16 + 1(no.) = 17cm E H = 2 + 0.1(no.) = 2.1m Ex.2: v = 4 + 0.05(no.) = 4.05ft/s y = 2 + 0.1(no.) = 2.1ft Ex.3: Q = 0.3 + 0.01(no.) = 0.31cfs H = 0.3 + 0.01(no.) = 0.31m Ex.4: A = 110+5(no.) x 110+5(no.) = 115 + 115m2 L = 2.5 + 0.1(no.) = 2.6m Ex.5: H = 0.25 + 0.01(no.) = 0.26m θ = 60o H = 0.25 + 0.01(no.) = 0.26m Ex.6: A = 30+1(no.) x 20+1(no.) = 31 x 21m2 θ = 60o A = 30+1(no.) x 20+1(no.) = 31 x 21m2 Ex.7: H = 18 + 1(no.) = 19cm θ = 90o H = 18 + 1(no.) = 19cm Ex.8: L = 2 + 0.1(no.) = 2.1ft H = 0.7 + 0.01(no.) = 0.71ft Ex.9: 50 – 1(no.) = 49cm P : 60 → 70cm y = 1.5 + 0.01(no.) = 1.51cm 14 Ex.10: P = 2.5 + 0.1(no.) = 2.6ft 2 Ex.11: 6 + 0.1(no.) = 6.1m 1.1 h = 0.7 + 0.1(no.) = 0.8ft 0.5 y = 0.8 + 0.01(no.) = 0.81m Ex.12: H = 3 + 0.1(no.) = 3.1ft B = 2.5 + 0.1(no.) = 2.6ft H.W: 07-08 E Ex.1: d = 16 + 1(no.) = 17cm M H = 2 + 0.1(no.) = 2.1m Ex.2: v = 4 + 0.05(no.) = 4.05ft/s y = 2 + 0.1(no.) = 2.1ft Ex.3: Q = 0.3 + 0.01(no.) = 0.31cfs H = 0.3 + 0.01(no.) = 0.31m Ex.4: A = 110+5(no.) x 110+5(no.) = 115 + 115m2 L = 2.5 + 0.1(no.) = 2.6m Ex.5: H = 0.25 + 0.01(no.) = 0.26m θ = 60o H = 0.25 + 0.01(no.) = 0.26m Ex.6: A = 30+1(no.) x 20+1(no.) = 31 x 21m2 θ = 60o A = 30+1(no.) x 20+1(no.) = 31 x 21m2 Ex.7: H = 18 + 1(no.) = 19cm θ = 90o H = 18 + 1(no.) = 19cm Ex.8: L = 2 + 0.1(no.) = 2.1ft H = 0.7 + 0.01(no.) = 0.71ft Ex.9: 50 – 1(no.) = 49cm Ex.10: P = 2.5 + 0.1(no.) = 2.6ft 2 Ex.11: 6 + 0.1(no.) = 6.1m P : 60 → 70cm y = 1.5 + 0.01(no.) = 1.51cm 1.1 h = 0.7 + 0.1(no.) = 0.8ft 0.5 y = 0.8 + 0.01(no.) = 0.81m Ex.12: H = 3 + 0.1(no.) = 3.1ft B = 2.5 + 0.1(no.) = 2.6ft 15 16
© Copyright 2026 Paperzz