Regio- and Stereospecific Uncatalyzed Reactions of Electron-rich Arenes and Olefins at Organomolybdenum Enantiomeric Scaffolds. Wenyong Chen,† Kasinath Sana, Yi Jiang,‡ Esmerelda V. S. Meyer,b Stacey Lapp,b Mary R. Galinski,b,c and Lanny S. Liebeskind*a [email protected] Table of Contents General Methods 1. Preparation of Substrates and Nucleophiles 2. NMR Study of Uncatalyzed Reaction 3. X-Ray Diffraction Study of ()-26 4. X-Ray Diffraction Study of ()-34 5. X-Ray Diffraction Study of ()-35 6. Bioassay Methods S1 S3 S9 S11 S21 S42 S51 General Methods All reactions were performed under an atmosphere of dry argon in oven-dried glassware unless otherwise noted. Solvents (THF, DMSO, DMF, MeOH, CH2Cl2 and toluene) for reaction media were ACS reagent grade and purchased from Aldrich. Solvents were dried over 4 Å molecular sieves and titrated for water level with a Fisher Coulomatic K-F titrator before using. Hexanes, S1 ethyl acetate (EtOAc), dichloromethane (DCM) and diethyl ether (Et2O) used for extraction and chromatography were obtained from EM Science and used as purchased. Brine refers to a saturated aqueous solution of NaCl. Analytical thin-layer chromatography (TLC) was carried out using Merck Kieselgel 0.25 mm 60 F254 plates with visualization by UV or phosphomolybdic acid. 1H NMR and 13C NMR spectra were recorded on a VNMR 400 (400 MHz 1H, 100 MHz 13 C), Varian INOVA 400 (400 MHz 1H, 100 MHz 13C), and Varian INOVA 600 (600 MHz 1H, 150 MHz 13C) instruments in CDCl3, with the solvent residual peak as internal reference (CDCl3: 1 H = 7.26 ppm, 13C = 77.0 ppm;) unless otherwise stated. Data are reported in the following order: chemical shifts (δ); multiplicities br (broadened), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet)); coupling constants, J (Hz); integration. Infrared (IR) spectroscopy was performed on an ASI ReactIR 1000 spectrometer. Peaks are reported (cm-1) with the following relative intensities: s (strong, 67-100%), m (medium, 40-67%), w (weak 20-40%), and br (broad). Uncalibrated melting points were taken on a Thomas-Hoover melting point apparatus in open capillary tubes. Since all of the Tp molybdenum complexes decompose over 180-200 oC, melting points are not useful and are not shown in the experimental section. High-resolution mass spectra were obtained on a JEOL JMS-SX102/SX102A/E instrument. Optical rotations were measured with Perkin-Elmer Model 341polarimeter. HPLC was performed using an Agilent 1100 Series with UV detector (254 nm or 210 nm) and Daicel® Chiralpak AS-RH, Chiralpak AD-RH, Chiralcel OJ-RH, Chiralcel OD-RH, or Agilent Eclipse XDB-C8 columns. Samples for HPLC analysis were prepared by dissolving 1-2 mg of the pure material in approximately 0.5 mL of acetonitrile. One microliter (1 μL) of the solution was injected for analysis. S2 Synthesis of S1 and S2 were accomplished according to literature procedures.1 1. Preparation of Substrates ()-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(-2,3,4)-1-t-butoxycarbonyl-5-hydroxy-5,6dihydro-2H-pyridin-2-yl]molybdenum, ()-S3 To a solution of TpMo(CO)2(5-oxo-3-6H-N-Boc pyridinyl) complex ()-2' (500 mg, 0.88 mmol, 1.0 equiv) in THF (20 mL) was added DIBAL (1.0 M in hexane, 2.2 mL, 2.18 mmol, 2.5 equiv) at 0 oC. The reaction mixture was stirred at 0 oC for 20 minutes, and then quenched with potassium sodium tartrate tetrahydrate (760 mg, 2.56 mmol, 3.0 equiv) and H2O (10 mL). The mixture was poured into a separatory funnel containing EtOAc (15 mL) and the layers were separated. The aqueous layer was extracted by EtOAc (2 x 25 mL), and the combined organic layers were dried over Na2SO4, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (S3 (452 mg, 0.80 mmol, 91%) as an orange solid. TLC (Rf = 0.27, 2:1 hexanes:EtOAc). 1H NMR (a mixture of two rotamers) (400 MHz, CDCl3) 8.42 (d, J = 1.2 Hz, 0.4 H), 8.40 (d, J = 1.2 Hz, 0.6 H), 8.18 (d, J = 1.2 Hz, 0.6 H), 7.96 (d, J = 1.2 Hz, 0.4 H), 7.82 (d, J = 0.8 Hz, 0.4 H), 7.77 (d, J = 1.2 Hz, 0.6 H), 7.62 (d, J = 2.0 Hz, 0.4 H), 7.56 (br s, 1.6 H), 7.46 (br s, 1 H), 7.20 (d, J = 5.2 Hz, 0.6 H), 7.00 (d, J = 5.6 Hz, 0.4 H), 6.23 (br s, 1 Chen, W.; Liebeskind, L. S. J. Am. Chem. Soc. 2009, 131, 12546 S3 0.4 H), 6.11-6.16 (m, 2.6 H), 4.67-4.79 (m, 2 H), 3.75 (dd, J = 12.0 Hz, 7.2 Hz, 0.4 H), 3.63 (dd, J = 12.4 Hz, 6.8 Hz, 0.6 H), 3.31 (t, J = 6.8 Hz, 0.6 H), 3.25 (t, J = 6.8 Hz, 0.4 H), 1.75-1.85 (m, 1 H), 1.59 (s, 3.6 H), 1.47 (s, 5.4 H). 13C NMR (100 MHz, CDCl3) δ232.7, 231.6, 224.1, 223.8, 154.6, 154.0, 146.6, 146.4, 143.8, 142.2, 141.1, 140.6, 136.0, 135.9, 135.82, 135.76, 134.3, 105.8, 105.7, 105.5, 105.4, 105.2, 94.4, 92.2, 81.5, 81.1, 69.5, 67.9, 67.8, 67.6, 57.2, 56.6, 47.4, 46.6, 28.1, 27.9, 27.4. IR (cm-1) 3420 (w), 2980 (w), 2482 (w), 1942 (s), 1845 (s), 1695 (s). HRMS (ESI) Calcd. for C21H26BMoN7O5 ([M+Na]+): 588.1035. Found: 588.1038. Ethyl 1-methyl-1H-indole-2-carboxylate, S4 To a solution of ethyl 2-indolecaboxylate (2 g, 10.6 mmol, 1.0 equiv) in DMF (50 mL) was added NaH (636 mg, 15.9 mmol, 1.5 equiv) and methyl iodide (2.26 g, 15.9 mmol, 1.5 equiv). The reaction mixture was stirred at room temperature for 5 hours, and then was added NaH (218 mg, 5.3 mmol, 0.5 equiv) and methyl iodide (0.75 g, 5.3 mmol, 1.5 equiv). The mixture was left to stir at room temperature overnight and the quenched with brine. The mixture was poured into a separatory funnel containing EtOAc (25 mL), and the layers were separated. The aqueous layer was extracted by EtOAc (2 x 25 mL), and the combined organic layers were washed by brine, dried over Na2SO4, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (6:1) afforded S4 (2.1 g, 10.3 mmol, 97%) as a white solid. TLC (Rf = 0.33, 6:1 hexanes:EtOAc). Mp 60-61oC. 1 H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 8.0 Hz, 1 H), 7.33-7.41 (m, 2 H), 7.32 (s, 1 H), 7.16 (ddd, J = 8.0 Hz, 6.4 Hz, 1.6 Hz, 1 H), 4.38 (q, J S4 = 7.6 Hz, 2 H), 4.09 (s, 3 H), 1.42 (t, J = 7.2 Hz, 3 H). 13 C NMR (100 MHz, CDCl3) δ 162.2, 139.6, 128.0, 125.8, 124.9, 122.5, 120.5, 110.2, 110.0, 60.5, 31.6, 14.3. IR (cm-1) 3053 (w), 2984 (w), 1706 (s), 1613 (w), 1517 (m). HRMS (ESI) Calcd. for C12H14NO2 ([M+H]+): 204.1019. Found: 204.1019. 1-Methyl-1H-indole-2-carbaldehyde, S5 To a solution of S4 (2.1 g, 10.3 mmol, 1.0 equiv) in THF (25 mL) was slowly added DIBAL (1.0 M in hexane, 25.8 mL, 25.8 mmol, 2.5 equiv) at -78oC. The reaction mixture was stirred at 78oC for 30 minutes, and then was slowly warmed up to room temperature. The reaction was quenched with potassium sodium tartrate tetrahydrate (9.2 g, 31 mmol, 3.0 equiv) and H2O (10 mL). The mixture was poured into a separatory funnel containing EtOAc (40 mL) and the layers were separated. The aqueous layer was extracted by EtOAc (2 x 35 mL), and the combined organic layers were dried over Na2SO4, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded the alcohol (1.6 g, 9.78 mmol, 95%) as a white solid. The alcohol: TLC (Rf = 0.34, 2:1 hexanes:EtOAc). Mp 100-101oC. 1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 7.6 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.25 (t, J = 8.0 Hz, 1H), 7.12 (t, J = 8.0 Hz, 1H), 6.45 (s, 1H), 4.79 (d, J = 5.6 Hz, 2H), 3.79 (s, 3H), 1.69 (s, 1H). 13 C NMR (100 MHz, CDCl3) δ 138.6, 138.0, 127.1, 121.9, 120.8, 119.5, 109.2, 101.3, 57.4, 29.8. IR (cm-1) 3354 (s), 3053 (m), 2934 (s), 1613 (w), 1548 (m). HRMS (ESI) Calcd. for C10H12NO ([M+H]+): 162.0913. Found: 162.0912. To a solution of the alcohol (1.6 g, 9.78 mmol, 1.0 equiv) in MeCN (40 mL) was added MnO2 (6.3 g, 78.24 mmol, 8 equiv). The reaction mixture was stirred at room temperature overnight, S5 and then filtered to remove the solid. The mixture was concentrated to give the product. Flash chromatography over silica gel with hexanes-EtOAc (6:1) afforded S5 (1.2 g, 7.53 mmol, 77%) as a white solid. TLC (Rf = 0.64, 3:1 hexanes:EtOAc). Mp 82-84oC. 1 H NMR (400 MHz, CDCl3) δ 9.89 (s, 1 H), 7.74 (d, J = 8.0 Hz, 1 H), 7.39-7.46 (m, 2 H), 7.26 (s, 1 H), 7.18 (ddd, J = 8.0 Hz, 6.0 Hz, 1.6 Hz, 1 H), 4.11 (s, 3 H). 13C NMR (100 MHz, CDCl3) δ 183.0, 182.9, 140.8, 135.6, 126.9, 126.3, 123.3, 120.9, 117.5, 110.4, 31.5. IR (cm-1) 2837 (w), 1671 (s), 1613 (m), 1521 (m). HRMS (ESI) Calcd. for C10H10NO ([M+H]+): 160.0757. Found: 160.0756. (E)-1-Methyl-2-(2-nitrovinyl)-1H-indole, S6 To a solution of S5 (500 mg, 3.14 mmol, 1.0 equiv) in nitromethane (15 mL) was added NH4OAc (60 mg, 0.77 mmol, 0.25 equiv). The reaction mixture was stirred at reflux for 3 hours. The mixture was poured into a separatory funnel containing EtOAc (10 mL) and the layers were separated. The aqueous layer was extracted by EtOAc (2 x 5 mL), and the combined organic layers were dried over Na2SO4, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (6:1) afforded S6 (494 mg, 2.45 mmol, 78%) as a yellow solid. TLC (Rf = 0.31, 3:1 hexanes:EtOAc). Mp 134-136 oC. 1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 13.2 Hz, 1 H), 7.68 (d, J = 13.2 Hz, 1 H), 7.64 (d, J = 8.0 Hz, 1 H), 7.35 (d, J = 3.6 Hz, 2 H), 7.14-7.18 (m, 1 H), 7.10 (s, 1 H), 3.87 (s, 3 H). 13C NMR (100 MHz, CDCl3) δ 140.2, 135.7, 129.9, 127.8, 127.3, 125.4, 122.1, 121.2, 110.0, 107.6, 30.3. IR (cm-1) 3111 (w), 2941 (w), 2049 (w), 1938 (w), 1621 (s). HRMS (ESI) Calcd. for C11H11N2O2 ([M+H]+): 203.0815. Found: 203.0815. Methyl-2-(2-nitroethyl)-1H-indole, S7 S6 To a solution of S6 (494 mg, 2.45 mmol, 1.0 equiv) in CHCl3 (20 mL) and i-PrOH (3 mL) was added NaBH4 (367 mg, 9.7 mmol, 4 equiv) and silica gel (3.65 g). The reaction mixture was stirred at room for 15 minutes. The reaction was quenched by HOAc, and then the mixture was filtered to yield a solution. It was poured into a separatory funnel containing EtOAc (10 mL) and the layers were separated. The aqueous layer was extracted by EtOAc (2 x 5 mL), and the combined organic layers were dried over Na2SO4, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (6:1) afforded S7 (320 mg, 1.59 mmol, 65%) as a yellow solid. TLC (Rf = 0.28, 2:1 hexanes:EtOAc). Mp 64-66 oC. 1 H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 7.6 Hz, 1 H), 7.24-7.33 (m, 2 H), 7.16 (dt, J = 7.2 Hz, 0.8 Hz, 1 H), 6.30 (d, J = 0.8 Hz, 1 H), 4.68 (t, J = 7.2 Hz, 2 H), 3.66 (s, 2 H), 3.43 (dt, J = 7.2 Hz, 0.8 Hz, 2 H). 13C NMR (100 MHz, CDCl3) δ δ 137.3, 134.1, 127.3, 121.4, 120.1, 119.6, 109.0, 99.5, 73.4, 29.3, 24.3. IR (cm-1) 3030 (w), 1552 (s), 1471 (m). HRMS (ESI) Calcd. for C11H13N2O2 ([M+H]+): 205.0972. Found: 205.0970 Methyl 3-(1-methyl-1H-indol-2-yl)-2-(phenylsulfonyl)acrylate, S8 To a solution of S5 (500 mg, 3.14 mmol, 1.0 equiv) in DMSO (20 mL) was added proline (75 mg, 0.62 mmol, 0.2 equiv) and methyl phenylsulfonyl acetate (1 g, 4.71 mmol, 1.5 equiv). The reaction mixture was stirred at room temperature overnight. The mixture was poured into a separatory funnel containing EtOAc (20 mL) and the layers were separated. The aqueous layer S7 was extracted by EtOAc (2 x 15 mL), and the combined organic layers were washed by brine, dried over Na2SO4, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (1:1) afforded S8 (1.06 g, 2.98 mmol, 95%) as a yellow solid. Mp 102-104 oC (I took the melting point). TLC (Rf = 0.30, 2:1 hexanes:EtOAc). 1H NMR (400 MHz, CDCl3) δ 8.17 (s, 1 H), 7.97 (d, J = 7.2 Hz, 2H), 7.54-7.66 (m, 4 H), 7.34 (d, J = 4.0 Hz, 1H), 7.19 (s, 1H), 7.10-7.15 (m, 1 H), 3.88 (s, 3H), 3.81 (s, 3H) . 13 C NMR (100 MHz, CDCl3) δ 163.3, 140.1, 139.3, 133.5, 132.4, 130.8, 130.1, 129.0, 128.3, 127.9, 127.3, 125.5, 122.3, 120.9, 110.0, 109.7, 52.8, 30.0. IR (cm-1) 3061 (w), 2953 (w), 1725 (s), 1602 (s), 1517 (s). HRMS (ESI) Calcd. for C19H18NO4S ([M+H]+): 356.0951. Found: 356.0954. Methyl 3-(1-methyl-1H-indol-2-yl)-2-(phenylsulfonyl)propanoate, S9 To a solution of S8 (250 mg, 0.7 mmol, 1.0 equiv) in EtOH (10 mL) and THF (5 mL) was added Pd/C (75 mg, 0.07 mmol, 0.1 equiv). The reaction mixture was stirred at room temperature under hydrogen balloon for 5 hours. The mixture was filtered to give the solution and then concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded S9 (1.06 g, 2.98 mmol, 88%) as a very light yellow solid. TLC (Rf = 0.28, 2:1 hexanes:EtOAc). Mp 114-116 ºC. 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.4 Hz, 2H), 7.74 (t, J = 7.2 Hz, 1H), 7.62 (t, J = 8.4 Hz, 2H), 7.50 (d, J = 8.0 Hz, 1 H), 7.27 (d, J = 8.8 Hz, 1H), 7.20 (dt, J = 6.8, 1.2 Hz, 1H), 7.08 (dt, J = 8.0 Hz, 0.8 Hz, 1H), 6.19 (s, 1H), 4.36 (dd, J = 9.2 Hz, 6.0 Hz, 1H), 3.67 (s, 3H), 3.57 (s, 3H), 3.51-3.56 (m, 2 H) . 13 C NMR (100 MHz, CDCl3) δ 165.5, 137.5, 136.7, 134.6, 134.0, 129.3, 129.2, 127.4, 121.5, 120.1, 119.6, 109.0, 100.2, 69.7, 53.2, 29.5, 23.9. IR S8 (cm-1) 3053 (w), 2953 (w), 1741 (s), 1471 (m). HRMS (ESI) Calcd. for C19H18NO4S ([M-H]-): 356.0962. Found: 356.0962. 2. NMR Study of Uncatalyzed Reaction of ()-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(-2,3,4)--2-trifluoroacetoxy-5,6-dihydro-2Hpyran-2-yl]molybdenum, ()-20a & 20b 3b (50 mg, 0.08 mmol, 1.0 equiv) was dissolved in 1.2 mL d6-DMSO for 10 minutes to give a mixture of two compounds 20a and 20b. 20a: 1H NMR (400 MHz, d6-DMSO) 8.55 (d, J = 2.0 Hz, 1 H), 8.13 (d, J = 2.0 Hz, 1 H), 8.03 (d, J = 2.0 Hz, 1 H), 7.81-7.87 (m, 3 H), 6.44-6.46 (m, 1 H), 6.24-6.32 (m, 2 H), 4.98 (br s, 1 H), 4.46 (d, J = 6.4 Hz, 1 H), 4.24 (d, J = 7.2 Hz, 1 H), 4.20 (d, J = 12.4 Hz, 1 H), 3.75 (t, J = 7.2 Hz, 1 H), 3.47 (d, J = 12.0 Hz, 1 H). 13C NMR (100 MHz, d6-DMSO) δ 227.0, 225.6, 158.4 (J = 38 Hz), 146.9, 142.6, 136.6, 135.3, 115.1 (J = 288 Hz), 106.7, 105.9, 89.6, 68.7, 68.2, 64.9, 57.0, 55.9. 20b: 1H NMR (400 MHz, d6-DMSO) 8.58 (d, J = 2.4 Hz, 1 H), 8.09 (d, J = 2.0 Hz, 1 H), 8.01 (d, J = 2.0 Hz, 1 H), 7.81-7.87 (m, 3 H), 6.44-6.46 (m, 1 H), 6.24-6.32 (m, 2 H), 4.93 (d, J = 2.0 Hz, 1 H), 4.56 (d, J = 7.8 Hz, 1 H), 4.39 (d, J = 12.4 Hz, 1 H), 4.17 (d, J = 8.0 Hz, 1 H), 3.89 (t, J = 7.6 Hz, 1 H), 3.57 (d, J = 10.0 Hz, 1 H). 13C NMR (100 MHz, d6-DMSO) δ 227.2, 225.3, 146.9, 142.6, 136.5, 135.2, 106.6, 105.8, 92.8, 89.6, 68.7, 68.4, 64.9, 57.0, 56.1. S9 Figure S-1. 1H NMR Spectra of the Transformation of 3b to 20a and 20b in DMSO The formation of 20a and 20b was monitored by 1HNMR. When 3b was dissolved in d6-DMSO, the featured peaks at 7.51 ppm and 5.86 started diminishing. At the same time, the intensity of the peak at 4.98 was increasing. These changes in the above 1H NMR spectra indicated the rapid rearrangement of 3a to form 20a and 20b. S10 Figure S-2. 1H NMR Spectra of the Decomposition of 3b in CD3CN When 3b was dissolved in CD3CN, the featured peaks at 7.24 ppm and 5.86 started diminishing. However, no proton signals for the rearrangement product 20a and 20b were observed. After 12 hours, 3b completely decomposed. 3. X-Ray Diffraction Study of ()-26 A suitable crystal of 26 was obtained by diffusion recrystallization from Et2O and hexanes. The crystal was mounted onto a nylon fibre with paratone oil and placed under a cold stream at 173(2) K. Single crystal X-ray data were collected on a Bruker APEX2 diffractometer with 1.5 S11 kW graphite monochromated Curadiation. The detector to crystal distance was 5.1 cm. The data collection was performed using multiple ω and an φ scans yielding data in the range 3.12 to 66.57° with an average completeness of 91%. The frames were integrated with the SAINT v7.68a.2 A multi-scan absorption correction was carried out using the program SADABS V20081.3 The structure was solved and refined with SHELXS and SHELXL.4 Molecular graphics were obtained using SHELXTL.5 All non-hydrogen atoms were refined anisotropically. ORTEP Diagram of 26 Table S-1 Crystal Data and Structure Refinement for 26. Identification code wyc_06_044 Empirical formula C24H23NO5S Formula weight 2 3 4 5 437.49 Bruker (2009). SAINT V7.68a, BRUKER AXS Inc., Madison, WI, USA. Bruker (2008), SADABS V2008-1, BRUKER AXS Inc., Madison, WI, USA. Sheldrick, G.M. Acta. Cryst. 2008, A64, 112-122. Bruker (2000).SHELXTL V5.10, BRUKER AXS Inc., Madison, WI, USA. S12 Temperature 173(2) K Wavelength Crystal system Space group Unit cell dimensions 1.54178 Å Triclinic P-1 a = 8.0781(2) Å b = 9.0667(2) Å c = 14.8527(4) Å 1028.21(4) Å3 2 1.413 Mg/m3 1.719 mm-1 Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 66.57° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole = 72.6870(10)°. = 84.4040(10)°. = 82.763(2)°. 460 0.29 x 0.26 x 0.11 mm3 3.12 to 66.57°. -8<=h<=9, -10<=k<=10, -16<=l<=17 9521 3306 [R(int) = 0.0174] 90.9 % Semi-empirical from equivalents 0.8335 and 0.6356 Full-matrix least-squares on F2 3306 / 0 / 280 1.027 R1 = 0.0369, wR2 = 0.1005 R1 = 0.0406, wR2 = 0.1052 0.406 and -0.315 e.Å-3 Table S-2 Atomic Coordinates ( x 104) and Equivalent Isotropic Displacement Parameters (Å2x 103) for 26. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______________________________________________________________________________ x y z U(eq) ______________________________________________________________________________ C(1) 1095(3) -91(2) 1229(1) 36(1) C(2) 405(2) 1524(2) 731(1) 32(1) C(3) 320(2) 2688(2) 1099(1) 28(1) S13 C(4) 779(2) 2445(2) 2098(1) 25(1) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13) 2427(2) 2475(2) 2196(2) 2329(2) 2642(2) 2234(3) 1516(3) 1183(2) 1594(2) 3085(2) 2981(2) 1368(2) -831(2) -1986(2) -3452(2) -3775(2) -2624(2) -1122(2) 2240(1) 3296(1) 3871(1) 5060(1) 5910(1) 5982(1) 5251(1) 4415(1) 4313(1) 24(1) 27(1) 26(1) 28(1) 35(1) 40(1) 38(1) 32(1) 27(1) C(14) C(15) C(16) C(17) C(18) C(19) C(20) C(21) C(22) C(23) 1511(2) 825(2) 3306(2) 4027(2) 5509(3) 4159(2) 4046(2) 5463(3) 6946(3) 7044(3) 312(2) 700(2) 1471(2) 2218(2) 1399(2) 5820(2) 6666(2) 7300(2) 7058(2) 6203(2) 3566(1) 2624(1) 5386(1) 1920(1) 695(1) 1814(1) 2454(1) 2575(2) 2071(2) 1436(1) 26(1) 27(1) 33(1) 26(1) 38(1) 25(1) 32(1) 40(1) 39(1) 37(1) C(24) 5647(2) 5579(2) 1291(1) 31(1) N(1) 2691(2) 692(2) 4780(1) 28(1) O(1) 1840(2) -186(1) 2078(1) 31(1) O(2) 5112(2) 1566(2) 2443(1) 36(1) O(3) 4080(2) 2278(2) 1015(1) 30(1) O(4) 903(2) 5901(2) 2000(1) 36(1) O(5) 2379(2) 5352(2) 579(1) 35(1) S(1) 2322(1) 5161(1) 1577(1) 26(1) _____________________________________________________________________________ S14 Table S-3 Bond Lengths [Å] and Angles [°] for 26. ______________________________________________________________________________ C(1)-O(1) 1.425(2) C(14)-C(15) 1.482(2) C(1)-C(2) 1.494(3) C(15)-O(1) 1.438(2) C(1)-H(1A) 0.9900 C(15)-H(15A) 1.0000 C(1)-H(1B) 0.9900 C(16)-N(1) 1.453(2) C(2)-C(3) 1.316(3) C(16)-H(16A) 0.9800 C(2)-H(2A) C(3)-C(4) C(3)-H(3A) C(4)-C(15) C(4)-C(5) C(4)-H(4A) C(5)-C(17) C(5)-C(6) C(5)-S(1) C(6)-C(7) 0.9500 1.511(2) 0.9500 1.540(2) 1.574(2) 1.0000 1.537(2) 1.547(2) 1.8414(16) 1.490(2) C(16)-H(16B) C(16)-H(16C) C(17)-O(2) C(17)-O(3) C(18)-O(3) C(18)-H(18A) C(18)-H(18B) C(18)-H(18C) C(19)-C(20) C(19)-C(24) 0.9800 0.9800 1.203(2) 1.326(2) 1.442(2) 0.9800 0.9800 0.9800 1.377(3) 1.396(3) C(6)-H(6A) C(6)-H(6B) C(7)-C(14) C(7)-N(1) C(8)-N(1) C(8)-C(9) C(8)-C(13) C(9)-C(10) C(9)-H(9A) C(10)-C(11) 0.9900 0.9900 1.367(2) 1.382(2) 1.379(2) 1.400(3) 1.413(3) 1.380(3) 0.9500 1.400(3) C(19)-S(1) C(20)-C(21) C(20)-H(20A) C(21)-C(22) C(21)-H(21A) C(22)-C(23) C(22)-H(22A) C(23)-C(24) C(23)-H(23A) C(24)-H(24A) 1.7704(17) 1.393(3) 0.9500 1.378(3) 0.9500 1.380(3) 0.9500 1.385(3) 0.9500 0.9500 C(10)-H(10A) C(11)-C(12) C(11)-H(11A) C(12)-C(13) C(12)-H(12A) C(13)-C(14) 0.9500 1.387(3) 0.9500 1.403(3) 0.9500 1.435(2) O(4)-S(1) O(5)-S(1) 1.4410(14) 1.4369(13) O(1)-C(1)-C(2) O(1)-C(1)-H(1A) C(2)-C(1)-H(1A) S15 112.69(15) 109.1 109.1 O(1)-C(1)-H(1B) 109.1 C(9)-C(10)-C(11) 121.93(18) C(2)-C(1)-H(1B) H(1A)-C(1)-H(1B) C(3)-C(2)-C(1) C(3)-C(2)-H(2A) C(1)-C(2)-H(2A) C(2)-C(3)-C(4) C(2)-C(3)-H(3A) C(4)-C(3)-H(3A) C(3)-C(4)-C(15) 109.1 107.8 123.07(16) 118.5 118.5 121.69(17) 119.2 119.2 108.28(14) C(9)-C(10)-H(10A) C(11)-C(10)-H(10A) C(12)-C(11)-C(10) C(12)-C(11)-H(11A) C(10)-C(11)-H(11A) C(11)-C(12)-C(13) C(11)-C(12)-H(12A) C(13)-C(12)-H(12A) C(12)-C(13)-C(8) 119.0 119.0 121.06(19) 119.5 119.5 118.59(19) 120.7 120.7 119.14(17) C(3)-C(4)-C(5) C(15)-C(4)-C(5) C(3)-C(4)-H(4A) C(15)-C(4)-H(4A) C(5)-C(4)-H(4A) C(17)-C(5)-C(6) C(17)-C(5)-C(4) C(6)-C(5)-C(4) C(17)-C(5)-S(1) C(6)-C(5)-S(1) 117.90(14) 110.01(13) 106.7 106.7 106.7 109.61(14) 113.42(14) 108.78(13) 109.87(11) 106.86(11) C(12)-C(13)-C(14) C(8)-C(13)-C(14) C(7)-C(14)-C(13) C(7)-C(14)-C(15) C(13)-C(14)-C(15) O(1)-C(15)-C(14) O(1)-C(15)-C(4) C(14)-C(15)-C(4) O(1)-C(15)-H(15A) C(14)-C(15)-H(15A) 134.66(17) 106.14(16) 107.29(16) 122.78(16) 129.93(16) 108.37(15) 109.93(13) 112.26(14) 108.7 108.7 C(4)-C(5)-S(1) C(7)-C(6)-C(5) C(7)-C(6)-H(6A) C(5)-C(6)-H(6A) C(7)-C(6)-H(6B) C(5)-C(6)-H(6B) H(6A)-C(6)-H(6B) C(14)-C(7)-N(1) C(14)-C(7)-C(6) N(1)-C(7)-C(6) 108.08(11) 108.36(14) 110.0 110.0 110.0 110.0 108.4 109.90(16) 125.58(16) 124.41(16) C(4)-C(15)-H(15A) N(1)-C(16)-H(16A) N(1)-C(16)-H(16B) H(16A)-C(16)-H(16B) N(1)-C(16)-H(16C) H(16A)-C(16)-H(16C) H(16B)-C(16)-H(16C) O(2)-C(17)-O(3) O(2)-C(17)-C(5) O(3)-C(17)-C(5) 108.7 109.5 109.5 109.5 109.5 109.5 109.5 124.23(17) 122.92(16) 112.85(14) N(1)-C(8)-C(9) N(1)-C(8)-C(13) C(9)-C(8)-C(13) C(10)-C(9)-C(8) C(10)-C(9)-H(9A) C(8)-C(9)-H(9A) 129.13(18) 108.52(15) 122.32(18) 116.94(19) 121.5 121.5 O(3)-C(18)-H(18A) O(3)-C(18)-H(18B) H(18A)-C(18)-H(18B) O(3)-C(18)-H(18C) H(18A)-C(18)-H(18C) H(18B)-C(18)-H(18C) 109.5 109.5 109.5 109.5 109.5 109.5 S16 C(20)-C(19)-C(24) 121.93(16) C(23)-C(24)-C(19) 118.27(18) C(20)-C(19)-S(1) C(24)-C(19)-S(1) C(19)-C(20)-C(21) C(19)-C(20)-H(20A) C(21)-C(20)-H(20A) C(22)-C(21)-C(20) C(22)-C(21)-H(21A) C(20)-C(21)-H(21A) C(21)-C(22)-C(23) 118.89(14) 118.96(14) 118.65(18) 120.7 120.7 120.1(2) 120.0 120.0 120.70(18) C(23)-C(24)-H(24A) C(19)-C(24)-H(24A) C(8)-N(1)-C(7) C(8)-N(1)-C(16) C(7)-N(1)-C(16) C(1)-O(1)-C(15) C(17)-O(3)-C(18) O(5)-S(1)-O(4) O(5)-S(1)-C(19) 120.9 120.9 108.13(15) 124.87(15) 126.64(16) 111.66(14) 114.94(14) 118.34(8) 107.71(8) C(21)-C(22)-H(22A) 119.6 O(4)-S(1)-C(19) 108.40(8) C(23)-C(22)-H(22A) 119.6 O(5)-S(1)-C(5) 110.30(8) C(22)-C(23)-C(24) 120.36(19) O(4)-S(1)-C(5) 105.82(8) C(22)-C(23)-H(23A) 119.8 C(19)-S(1)-C(5) 105.56(8) C(24)-C(23)-H(23A) 119.8 ______________________________________________________________________________ Symmetry transformations used to generate equivalent atoms: Table S-4. Anisotropic Displacement Parameters (Å2x 103) for 26. The anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ C(1) 50(1) 35(1) 28(1) -12(1) -8(1) -8(1) C(2) 33(1) 39(1) 25(1) -6(1) -8(1) -11(1) C(3) 26(1) 32(1) 24(1) -2(1) -8(1) -6(1) C(4) 24(1) 26(1) 24(1) -6(1) -5(1) -4(1) C(5) 27(1) 22(1) 23(1) -4(1) -6(1) -4(1) C(6) 29(1) 29(1) 24(1) -8(1) -6(1) -5(1) C(7) 24(1) 32(1) 23(1) -5(1) -4(1) -2(1) C(8) C(9) C(10) C(11) C(12) C(13) 24(1) 31(1) 39(1) 39(1) 30(1) 24(1) 34(1) 44(1) 38(1) 30(1) 33(1) 31(1) 24(1) 24(1) 31(1) 40(1) 31(1) 24(1) -4(1) -3(1) 6(1) -1(1) -6(1) -4(1) S17 -2(1) -4(1) -1(1) 1(1) 0(1) -1(1) -1(1) 2(1) 2(1) -3(1) -4(1) -2(1) C(14) 25(1) 29(1) 24(1) -5(1) -4(1) -3(1) C(15) C(16) C(17) C(18) C(19) C(20) C(21) C(22) C(23) 28(1) 32(1) 27(1) 39(1) 24(1) 30(1) 45(1) 32(1) 27(1) 28(1) 44(1) 23(1) 37(1) 22(1) 31(1) 34(1) 32(1) 38(1) 25(1) 26(1) 26(1) 36(1) 26(1) 35(1) 47(1) 50(1) 39(1) -6(1) -12(1) -4(1) -11(1) -1(1) -10(1) -15(1) -1(1) 1(1) -4(1) -8(1) -6(1) 3(1) -6(1) -4(1) -15(1) -14(1) -3(1) -6(1) -4(1) -6(1) 2(1) -4(1) -4(1) -6(1) -10(1) -6(1) C(24) 32(1) 31(1) 27(1) -4(1) -3(1) -3(1) N(1) 29(1) 35(1) 21(1) -6(1) -5(1) -3(1) O(1) 37(1) 29(1) 27(1) -9(1) -8(1) -2(1) O(2) 30(1) 43(1) 34(1) -10(1) -13(1) 4(1) O(3) 29(1) 34(1) 25(1) -7(1) -3(1) 0(1) O(4) 26(1) 29(1) 50(1) -9(1) -5(1) -2(1) O(5) 41(1) 32(1) 29(1) 0(1) -15(1) -7(1) S(1) 24(1) 23(1) 28(1) -3(1) -8(1) -3(1) _____________________________________________________________________________ Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 10 3) for 26. ______________________________________________________________________________ x y z U(eq) ______________________________________________________________________________ H(1A) 182 -776 1382 43 H(1B) 1942 -473 801 43 H(2A) 10 1721 120 38 H(3A) -39 3706 726 34 H(4A) H(6A) H(6B) H(9A) H(10A) H(11A) -162 3573 1593 3114 2446 1253 2981 3237 3729 -1771 -4265 -4799 2410 3417 3469 6412 6546 5327 S18 29 32 32 42 48 46 H(12A) 687 -2848 3923 38 H(15A) H(16A) H(16B) H(16C) H(18A) H(18B) H(18C) H(20A) H(21A) -340 3463 4375 2493 5446 5516 6537 3023 5407 393 2545 927 1465 1505 301 1792 6814 7900 2709 5025 5621 5922 23 1058 788 2804 3006 32 50 50 50 57 57 57 38 48 H(22A) 7910 7484 2163 47 H(23A) 8076 6041 1095 44 H(24A) 5701 5003 848 37 ___________________________________________________________________ _____ Table 6 Torsion angles [°] for 26. ___________________________________________________________________________ O(1)-C(1)-C(2)-C(3) -7.7(3) C(1)-C(2)-C(3)-C(4) -5.5(3) C(2)-C(3)-C(4)-C(15) -15.8(2) C(2)-C(3)-C(4)-C(5) C(3)-C(4)-C(5)-C(17) C(15)-C(4)-C(5)-C(17) C(3)-C(4)-C(5)-C(6) C(15)-C(4)-C(5)-C(6) C(3)-C(4)-C(5)-S(1) C(15)-C(4)-C(5)-S(1) C(17)-C(5)-C(6)-C(7) C(4)-C(5)-C(6)-C(7) S(1)-C(5)-C(6)-C(7) 109.8(2) -68.04(19) 56.74(18) 169.71(15) -65.51(18) 54.04(18) 178.82(11) -72.83(17) 51.69(18) 168.15(12) C(5)-C(6)-C(7)-C(14) C(5)-C(6)-C(7)-N(1) N(1)-C(8)-C(9)-C(10) C(13)-C(8)-C(9)-C(10) C(8)-C(9)-C(10)-C(11) C(9)-C(10)-C(11)-C(12) -18.6(2) 157.34(17) -176.20(18) 1.5(3) -0.9(3) 0.0(3) S19 C(10)-C(11)-C(12)-C(13) 0.5(3) C(11)-C(12)-C(13)-C(8) C(11)-C(12)-C(13)-C(14) N(1)-C(8)-C(13)-C(12) C(9)-C(8)-C(13)-C(12) N(1)-C(8)-C(13)-C(14) C(9)-C(8)-C(13)-C(14) N(1)-C(7)-C(14)-C(13) C(6)-C(7)-C(14)-C(13) N(1)-C(7)-C(14)-C(15) 0.0(3) 176.9(2) 177.08(16) -1.0(3) -0.6(2) -178.71(17) -0.9(2) 175.54(17) 178.56(16) C(6)-C(7)-C(14)-C(15) C(12)-C(13)-C(14)-C(7) C(8)-C(13)-C(14)-C(7) C(12)-C(13)-C(14)-C(15) C(8)-C(13)-C(14)-C(15) C(7)-C(14)-C(15)-O(1) C(13)-C(14)-C(15)-O(1) C(7)-C(14)-C(15)-C(4) C(13)-C(14)-C(15)-C(4) C(3)-C(4)-C(15)-O(1) -5.0(3) -176.3(2) 0.9(2) 4.3(3) -178.48(18) 114.48(18) -66.2(2) -7.1(2) 172.21(17) 50.69(18) C(5)-C(4)-C(15)-O(1) C(3)-C(4)-C(15)-C(14) C(5)-C(4)-C(15)-C(14) C(6)-C(5)-C(17)-O(2) C(4)-C(5)-C(17)-O(2) S(1)-C(5)-C(17)-O(2) C(6)-C(5)-C(17)-O(3) C(4)-C(5)-C(17)-O(3) S(1)-C(5)-C(17)-O(3) C(24)-C(19)-C(20)-C(21) -79.45(17) 171.39(15) 41.25(19) 0.5(2) -121.33(18) 117.60(16) -179.17(13) 59.04(18) -62.03(16) 0.2(3) S(1)-C(19)-C(20)-C(21) C(19)-C(20)-C(21)-C(22) C(20)-C(21)-C(22)-C(23) C(21)-C(22)-C(23)-C(24) C(22)-C(23)-C(24)-C(19) C(20)-C(19)-C(24)-C(23) -174.33(14) -0.9(3) 0.7(3) 0.3(3) -1.0(3) 0.7(3) S20 S(1)-C(19)-C(24)-C(23) 175.27(14) C(9)-C(8)-N(1)-C(7) C(13)-C(8)-N(1)-C(7) C(9)-C(8)-N(1)-C(16) C(13)-C(8)-N(1)-C(16) C(14)-C(7)-N(1)-C(8) C(6)-C(7)-N(1)-C(8) C(14)-C(7)-N(1)-C(16) C(6)-C(7)-N(1)-C(16) C(2)-C(1)-O(1)-C(15) 178.01(18) 0.1(2) -8.5(3) 173.63(17) 0.5(2) -175.97(16) -172.88(17) 10.6(3) 44.1(2) C(14)-C(15)-O(1)-C(1) C(4)-C(15)-O(1)-C(1) O(2)-C(17)-O(3)-C(18) C(5)-C(17)-O(3)-C(18) C(20)-C(19)-S(1)-O(5) C(24)-C(19)-S(1)-O(5) C(20)-C(19)-S(1)-O(4) C(24)-C(19)-S(1)-O(4) C(20)-C(19)-S(1)-C(5) C(24)-C(19)-S(1)-C(5) 169.55(14) -67.43(18) 4.1(2) -176.28(14) 139.60(14) -35.12(16) 10.45(16) -164.27(14) -102.56(15) 82.72(15) C(17)-C(5)-S(1)-O(5) 57.58(14) C(6)-C(5)-S(1)-O(5) 176.42(11) C(4)-C(5)-S(1)-O(5) -66.65(13) C(17)-C(5)-S(1)-O(4) -173.30(11) C(6)-C(5)-S(1)-O(4) -54.46(13) C(4)-C(5)-S(1)-O(4) 62.46(13) C(17)-C(5)-S(1)-C(19) -58.50(13) C(6)-C(5)-S(1)-C(19) 60.34(13) C(4)-C(5)-S(1)-C(19) 177.26(11) ________________________________________________________________ Symmetry transformations used to generate equivalent atoms: S21 4. X-Ray Diffraction Study of (±)-34 A suitable crystal of 34 was obtained by diffusion recrystallization from EtOAc and methanol. The crystals grew as yellow plates. The crystal was mounted onto a nylon fibre with paratone oil and placed under a cold stream at 173(2)K. Single crystal X-ray data were collected on a Bruker APEX2 diffractometer with 1.6 kW graphite monochromated Mo radiations. The detector to crystal distance was 5.1 cm. The data collection was performed using ω scans with different φ values yielding data in the range 1.84 to 31.06° with an average completeness of 97.8%. The frames were integrated with the SAINT v7.68a.2 A combination of a numerical and amulti-scan absorption correction was carried out using the program SADABS V2008-1.3 The structure was solved and refined with Olex26, a graphical interface to SHELX.4 In the final cycles of refinement all non-hydrogen atoms were refined anisotropically. ORTEP Diagram of 34 6 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339-341. Supramol. Chem. 2001, 1, 189-191. S22 Table S-5. Crystal Data and Structure Refinement for 34. Identification code ks136f1 Empirical formula C36H38BMoN9O7 Formula weight 815.50 Temperature 173.15 K Wavelength 0.71073 Å Crystal system Triclinic Space group P -1 Unit cell dimensions a = 7.7695(12) Å b = 10.6902(16) Å Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 31.06° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole c = 22.339(3) Å 1820.8(5) Å3 2 1.487 Mg/m3 0.423 mm-1 α= 89.222(2)°. β= 81.538(2)°. γ = 82.824(2)°. 840 0.384 x 0.222 x 0.096 mm3 1.84 to 31.06°. -11<=h<=11, -15<=k<=15, -32<=l<=32 38333 11428 [R(int) = 0.0330] 97.8 % Semi-empirical from equivalents 0.7356 and 0.6650 Full-matrix least-squares on F2 11428 / 0 / 488 1.129 R1 = 0.0443, wR2 = 0.1029 R1 = 0.0505, wR2 = 0.1055 2.008 and -0.834 e.Å-3 Table S-6. Atomic Coordinates ( x 104) and Equivalent Isotropic Displacement Parameters (Å2x 103) for 34. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______________________________________________________________________________ __ S23 x y z U(eq) ______________________________________________________________________________ __ Mo(1) 1839(1) 9615(1) 7900(1) 17(1) O(1) 3322(3) 8944(2) 9100(1) 38(1) O(2) 1046(3) 6837(2) 8009(1) 42(1) O(3) 6678(3) 6718(2) 8672(1) 34(1) O(4) 5578(2) 5318(2) 8131(1) 30(1) O(5) 6555(3) 4648(2) 6877(1) 39(1) O(6) 9200(3) 7593(2) 5592(1) 49(1) N(1) N(2) N(3) N(4) N(5) N(6) N(7) N(9) N(8) C(1) 65(2) -1134(2) -1797(2) -684(2) 331(3) 1834(2) 5518(2) 7137(3) 8409(3) -2059(3) 10086(2) 11146(2) 11208(2) 10165(2) 12543(2) 11778(2) 7396(2) 4626(2) 5600(2) 11232(2) 7176(1) 7241(1) 8376(1) 8485(1) 7845(1) 7907(1) 7852(1) 4958(1) 5698(1) 6773(1) 21(1) 21(1) 22(1) 21(1) 23(1) 22(1) 21(1) 32(1) 29(1) 28(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) -1471(3) -152(3) -1353(3) -2879(3) -3110(3) 2995(3) 2263(4) 572(3) 2803(3) 1362(3) 10218(3) 9525(2) 9713(2) 10464(3) 11402(2) 12570(2) 13823(2) 13766(2) 9215(2) 7862(2) 6394(1) 6663(1) 9023(1) 9264(1) 8842(1) 7995(1) 7991(1) 7896(1) 8653(1) 7967(1) 31(1) 26(1) 26(1) 32(1) 28(1) 28(1) 33(1) 30(1) 23(1) 25(1) C(12) C(13) C(14) C(15) C(16) C(17) 4143(3) 3606(3) 4813(3) 5890(3) 7074(4) 7983(4) 9566(2) 8366(2) 7202(2) 6399(2) 5735(3) 6344(2) 7197(1) 7136(1) 7293(1) 8210(1) 9103(1) 9551(1) 24(1) 22(1) 21(1) 24(1) 39(1) 32(1) S24 C(18) 6978(4) 7111(3) 10003(1) 44(1) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) 7767(5) 9542(5) 10569(5) 9781(4) 6112(3) 4874(3) 6296(3) 7506(3) 8987(3) 7729(4) 7579(4) 6838(4) 6209(3) 8618(2) 9690(2) 6931(2) 5717(2) 5471(3) 10408(1) 10369(2) 9924(2) 9505(2) 7940(1) 7736(1) 6755(1) 6824(1) 6297(1) 54(1) 55(1) 57(1) 44(1) 23(1) 25(1) 26(1) 30(1) 36(1) C(28) C(29) C(30) C(31) C(32) C(33) C(34) C(35) B(1) O(7) 8595(3) 8022(3) 7272(3) 7709(3) 6655(4) 6881(4) 7705(4) 8250(4) -1377(3) 3637(4) 6721(2) 6734(2) 5705(2) 4631(2) 5744(3) 6789(4) 7775(3) 7767(3) 12002(2) 7495(2) 5381(1) 4786(1) 4604(1) 5471(1) 4040(1) 3669(1) 3847(2) 4401(2) 7802(1) 5666(1) 33(1) 31(1) 30(1) 30(1) 41(1) 51(1) 53(1) 45(1) 23(1) 68(1) C(36) 3532(6) 8587(4) 5316(2) 71(1) Table S-7. Bond Lengths [Å] and Angles [°] for 34. _____________________________________________________ Mo(1)-N(1) 2.2867(17) Mo(1)-N(4) 2.2081(17) Mo(1)-N(6) 2.3122(18) Mo(1)-C(10) 1.961(2) Mo(1)-C(11) Mo(1)-C(12) Mo(1)-C(13) Mo(1)-C(24) O(1)-C(10) O(2)-C(11) 1.955(2) 2.196(2) 2.344(2) 2.344(2) 1.153(3) 1.153(3) S25 O(3)-C(15) 1.343(3) O(3)-C(16) O(4)-C(15) O(5)-C(26) O(6)-C(28) O(5)-H(5) O(7)-C(36) O(7)-H(7A) N(1)-C(3) N(1)-N(2) 1.451(3) 1.230(3) 1.431(3) 1.224(3) 0.8200 1.396(5) 0.8200 1.342(3) 1.369(2) N(2)-B(1) N(2)-C(1) N(3)-C(6) N(3)-B(1) N(3)-N(4) N(4)-C(4) N(5)-B(1) N(5)-N(6) N(5)-C(9) N(6)-C(7) 1.536(3) 1.350(3) 1.346(3) 1.545(3) 1.365(2) 1.347(3) 1.528(3) 1.363(3) 1.352(3) 1.348(3) N(7)-C(23) N(7)-C(15) N(7)-C(14) N(8)-C(31) N(8)-C(27) N(8)-C(28) N(9)-C(31) N(9)-C(30) C(1)-C(2) C(2)-C(3) 1.464(3) 1.351(3) 1.462(3) 1.365(3) 1.472(3) 1.396(3) 1.290(3) 1.396(3) 1.374(4) 1.392(3) C(4)-C(5) C(5)-C(6) C(7)-C(8) C(8)-C(9) C(12)-C(24) C(12)-C(13) 1.388(4) 1.380(4) 1.389(3) 1.370(4) 1.419(3) 1.412(3) S26 C(13)-C(14) 1.532(3) C(14)-C(25) C(16)-C(17) C(17)-C(18) C(17)-C(22) C(18)-C(19) C(19)-C(20) C(20)-C(21) C(21)-C(22) C(23)-C(24) 1.541(3) 1.505(4) 1.390(4) 1.375(4) 1.382(5) 1.358(6) 1.372(6) 1.411(5) 1.512(3) C(25)-C(26) C(26)-C(27) C(28)-C(29) C(29)-C(35) C(29)-C(30) C(30)-C(32) C(32)-C(33) C(33)-C(34) C(34)-C(35) C(1)-H(1) 1.525(3) 1.521(4) 1.463(4) 1.403(4) 1.399(3) 1.410(4) 1.395(5) 1.391(5) 1.364(5) 0.9300 C(2)-H(2) C(3)-H(3) C(4)-H(4) C(5)-H(5A) C(6)-H(6) C(7)-H(7) C(8)-H(8) C(9)-H(9) C(12)-H(12) C(13)-H(13) 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9300 0.9800 0.9800 C(14)-H(14) C(16)-H(16B) C(16)-H(16A) C(18)-H(18) C(19)-H(19) C(20)-H(20) 0.9800 0.9700 0.9700 0.9300 0.9300 0.9300 S27 C(21)-H(21) 0.9300 C(22)-H(22) C(23)-H(23A) C(23)-H(23B) C(24)-H(24) C(25)-H(25A) C(25)-H(25B) C(26)-H(26) C(27)-H(27A) C(27)-H(27B) 0.9300 0.9700 0.9700 0.9800 0.9700 0.9700 0.9800 0.9700 0.9700 C(31)-H(31) C(32)-H(32) C(33)-H(33) C(34)-H(34) C(35)-H(35) C(36)-H(36A) C(36)-H(36B) C(36)-H(36C) B(1)-H(1A) 0.9300 0.9300 0.9300 0.9300 0.9300 0.9600 0.9600 0.9600 1.1000 N(1)-Mo(1)-N(4) N(1)-Mo(1)-N(6) N(1)-Mo(1)-C(10) N(1)-Mo(1)-C(11) N(1)-Mo(1)-C(12) N(1)-Mo(1)-C(13) N(1)-Mo(1)-C(24) N(4)-Mo(1)-N(6) N(4)-Mo(1)-C(10) N(4)-Mo(1)-C(11) 80.24(6) 82.49(6) 165.75(8) 93.58(8) 89.45(7) 84.13(7) 123.72(7) 80.33(6) 85.97(8) 88.58(8) N(4)-Mo(1)-C(12) N(4)-Mo(1)-C(13) N(4)-Mo(1)-C(24) N(6)-Mo(1)-C(10) N(6)-Mo(1)-C(11) N(6)-Mo(1)-C(12) 164.11(7) 151.78(7) 147.02(7) 98.79(8) 168.70(8) 86.40(7) S28 N(6)-Mo(1)-C(13) 120.78(7) N(6)-Mo(1)-C(24) C(10)-Mo(1)-C(11) C(10)-Mo(1)-C(12) C(10)-Mo(1)-C(13) C(10)-Mo(1)-C(24) C(11)-Mo(1)-C(12) C(11)-Mo(1)-C(13) C(11)-Mo(1)-C(24) C(12)-Mo(1)-C(13) 81.02(7) 82.44(9) 104.78(9) 106.93(8) 70.34(9) 104.22(9) 69.03(8) 109.81(9) 36.06(8) C(12)-Mo(1)-C(24) C(13)-Mo(1)-C(24) C(15)-O(3)-C(16) C(26)-O(5)-H(5) C(36)-O(7)-H(7A) Mo(1)-N(1)-N(2) Mo(1)-N(1)-C(3) N(2)-N(1)-C(3) N(1)-N(2)-B(1) C(1)-N(2)-B(1) 36.24(8) 60.40(8) 116.9(2) 109.00 109.00 119.29(13) 134.57(15) 106.12(17) 121.85(16) 128.42(18) N(1)-N(2)-C(1) N(4)-N(3)-B(1) N(4)-N(3)-C(6) C(6)-N(3)-B(1) Mo(1)-N(4)-N(3) N(3)-N(4)-C(4) Mo(1)-N(4)-C(4) C(9)-N(5)-B(1) N(6)-N(5)-C(9) N(6)-N(5)-B(1) 109.61(17) 120.17(16) 109.52(17) 130.20(18) 122.43(13) 106.35(17) 130.77(14) 128.0(2) 110.3(2) 121.32(17) Mo(1)-N(6)-C(7) Mo(1)-N(6)-N(5) N(5)-N(6)-C(7) C(14)-N(7)-C(23) C(15)-N(7)-C(23) C(14)-N(7)-C(15) 135.60(14) 119.42(13) 104.87(18) 117.66(17) 121.82(18) 119.43(18) S29 C(27)-N(8)-C(31) 119.4(2) C(27)-N(8)-C(28) C(28)-N(8)-C(31) C(30)-N(9)-C(31) N(2)-C(1)-C(2) C(1)-C(2)-C(3) N(1)-C(3)-C(2) N(4)-C(4)-C(5) C(4)-C(5)-C(6) N(3)-C(6)-C(5) 118.4(2) 122.1(2) 116.6(2) 108.6(2) 105.0(2) 110.6(2) 110.4(2) 104.9(2) 108.8(2) N(6)-C(7)-C(8) C(7)-C(8)-C(9) N(5)-C(9)-C(8) Mo(1)-C(10)-O(1) Mo(1)-C(11)-O(2) C(13)-C(12)-C(24) Mo(1)-C(12)-C(24) Mo(1)-C(12)-C(13) Mo(1)-C(13)-C(14) Mo(1)-C(13)-C(12) 111.8(2) 104.2(2) 108.8(2) 177.2(2) 178.7(2) 112.81(19) 77.57(14) 77.69(13) 120.76(13) 66.25(12) C(12)-C(13)-C(14) N(7)-C(14)-C(25) N(7)-C(14)-C(13) C(13)-C(14)-C(25) O(3)-C(15)-N(7) O(4)-C(15)-N(7) O(3)-C(15)-O(4) O(3)-C(16)-C(17) C(16)-C(17)-C(22) C(16)-C(17)-C(18) 118.4(2) 111.15(18) 111.34(17) 107.70(17) 111.78(18) 125.6(2) 122.7(2) 105.1(2) 121.6(2) 118.9(3) C(18)-C(17)-C(22) C(17)-C(18)-C(19) C(18)-C(19)-C(20) C(19)-C(20)-C(21) C(20)-C(21)-C(22) C(17)-C(22)-C(21) 119.4(3) 120.7(3) 119.9(3) 120.8(4) 119.9(4) 119.3(3) S30 N(7)-C(23)-C(24) 111.44(19) C(12)-C(24)-C(23) Mo(1)-C(24)-C(12) Mo(1)-C(24)-C(23) C(14)-C(25)-C(26) C(25)-C(26)-C(27) O(5)-C(26)-C(25) O(5)-C(26)-C(27) N(8)-C(27)-C(26) O(6)-C(28)-C(29) 119.88(19) 66.19(13) 120.42(15) 113.43(18) 113.1(2) 111.2(2) 107.7(2) 114.0(2) 124.4(2) N(8)-C(28)-C(29) O(6)-C(28)-N(8) C(28)-C(29)-C(35) C(30)-C(29)-C(35) C(28)-C(29)-C(30) C(29)-C(30)-C(32) N(9)-C(30)-C(29) N(9)-C(30)-C(32) N(8)-C(31)-N(9) C(30)-C(32)-C(33) 113.8(2) 121.8(2) 119.8(2) 120.7(2) 119.5(2) 119.3(2) 122.2(2) 118.6(2) 125.7(2) 118.8(3) C(32)-C(33)-C(34) C(33)-C(34)-C(35) C(29)-C(35)-C(34) N(2)-C(1)-H(1) C(2)-C(1)-H(1) C(3)-C(2)-H(2) C(1)-C(2)-H(2) N(1)-C(3)-H(3) C(2)-C(3)-H(3) N(4)-C(4)-H(4) 121.0(3) 120.7(3) 119.5(3) 126.00 126.00 127.00 128.00 125.00 125.00 125.00 C(5)-C(4)-H(4) C(6)-C(5)-H(5A) C(4)-C(5)-H(5A) N(3)-C(6)-H(6) C(5)-C(6)-H(6) N(6)-C(7)-H(7) 125.00 128.00 128.00 126.00 126.00 124.00 S31 C(8)-C(7)-H(7) 124.00 C(9)-C(8)-H(8) C(7)-C(8)-H(8) C(8)-C(9)-H(9) N(5)-C(9)-H(9) C(13)-C(12)-H(12) C(24)-C(12)-H(12) Mo(1)-C(12)-H(12) Mo(1)-C(13)-H(13) C(12)-C(13)-H(13) 128.00 128.00 126.00 126.00 123.00 123.00 123.00 114.00 114.00 C(14)-C(13)-H(13) C(13)-C(14)-H(14) C(25)-C(14)-H(14) N(7)-C(14)-H(14) C(17)-C(16)-H(16A) O(3)-C(16)-H(16B) O(3)-C(16)-H(16A) H(16A)-C(16)-H(16B) C(17)-C(16)-H(16B) C(19)-C(18)-H(18) 114.00 109.00 109.00 109.00 111.00 111.00 111.00 109.00 111.00 120.00 C(17)-C(18)-H(18) C(20)-C(19)-H(19) C(18)-C(19)-H(19) C(21)-C(20)-H(20) C(19)-C(20)-H(20) C(22)-C(21)-H(21) C(20)-C(21)-H(21) C(21)-C(22)-H(22) C(17)-C(22)-H(22) N(7)-C(23)-H(23B) 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 109.00 N(7)-C(23)-H(23A) C(24)-C(23)-H(23A) H(23A)-C(23)-H(23B) C(24)-C(23)-H(23B) C(23)-C(24)-H(24) C(12)-C(24)-H(24) 109.00 109.00 108.00 109.00 114.00 114.00 S32 Mo(1)-C(24)-H(24) 114.00 C(14)-C(25)-H(25A) C(14)-C(25)-H(25B) C(26)-C(25)-H(25A) C(26)-C(25)-H(25B) H(25A)-C(25)-H(25B) C(25)-C(26)-H(26) C(27)-C(26)-H(26) O(5)-C(26)-H(26) C(26)-C(27)-H(27B) 109.00 109.00 109.00 109.00 108.00 108.00 108.00 108.00 109.00 C(26)-C(27)-H(27A) N(8)-C(27)-H(27B) H(27A)-C(27)-H(27B) N(8)-C(27)-H(27A) N(8)-C(31)-H(31) N(9)-C(31)-H(31) C(33)-C(32)-H(32) C(30)-C(32)-H(32) C(32)-C(33)-H(33) C(34)-C(33)-H(33) 109.00 109.00 108.00 109.00 117.00 117.00 121.00 121.00 120.00 119.00 C(33)-C(34)-H(34) C(35)-C(34)-H(34) C(34)-C(35)-H(35) C(29)-C(35)-H(35) H(36A)-C(36)-H(36C) H(36A)-C(36)-H(36B) O(7)-C(36)-H(36C) O(7)-C(36)-H(36A) H(36B)-C(36)-H(36C) O(7)-C(36)-H(36B) 120.00 120.00 120.00 120.00 110.00 109.00 109.00 109.00 110.00 109.00 N(2)-B(1)-N(3) N(2)-B(1)-N(5) N(3)-B(1)-N(5) N(2)-B(1)-H(1A) N(3)-B(1)-H(1A) N(5)-B(1)-H(1A) 109.12(16) 109.68(18) 107.50(18) 110.00 112.00 109.00 S33 _____________________________________________________________ Symmetry transformations used to generate equivalent atoms: Table S-8. Anisotropic Displacement Parameters (Å2x 103) for 34. The anisotropic displacement factor exponent takes the form: -2ᴫ2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ Mo(1) 15(1) 16(1) 18(1) -1(1) -1(1) 0(1) O(1) 35(1) 54(1) 24(1) 4(1) -9(1) -2(1) O(2) O(3) O(4) O(5) O(6) N(1) N(2) N(3) N(4) N(5) 47(1) 48(1) 41(1) 54(1) 49(1) 20(1) 18(1) 17(1) 18(1) 25(1) 20(1) 27(1) 24(1) 29(1) 44(1) 20(1) 24(1) 25(1) 21(1) 18(1) 57(1) 30(1) 28(1) 30(1) 53(1) 22(1) 22(1) 22(1) 22(1) 27(1) 0(1) 3(1) -1(1) -4(1) -17(1) -2(1) 0(1) -4(1) -1(1) -1(1) 7(1) -22(1) -10(1) -1(1) 1(1) -3(1) -4(1) -2(1) -1(1) -5(1) -8(1) -3(1) -3(1) 8(1) -11(1) -2(1) 0(1) 2(1) -1(1) 0(1) N(6) N(7) N(9) N(8) C(1) C(2) C(3) C(4) C(5) C(6) 21(1) 21(1) 31(1) 27(1) 23(1) 29(1) 27(1) 25(1) 23(1) 18(1) 20(1) 20(1) 34(1) 33(1) 35(1) 44(1) 29(1) 29(1) 46(1) 39(1) 24(1) 21(1) 28(1) 24(1) 26(1) 24(1) 24(1) 23(1) 25(1) 27(1) -1(1) -4(1) -4(1) -6(1) 5(1) -2(1) -6(1) 2(1) -3(1) -8(1) -4(1) -6(1) 2(1) 0(1) -7(1) -10(1) -5(1) -1(1) 4(1) 1(1) -2(1) 2(1) -3(1) 6(1) 0(1) -6(1) -4(1) -7(1) -6(1) 1(1) C(7) C(8) C(9) C(10) C(11) C(12) 28(1) 39(1) 39(1) 21(1) 24(1) 20(1) 24(1) 20(1) 17(1) 25(1) 22(1) 26(1) 32(1) 41(1) 34(1) 23(1) 27(1) 23(1) -2(1) -4(1) -2(1) -1(1) -2(1) 4(1) -9(1) -6(1) -5(1) -2(1) 1(1) 4(1) -5(1) -7(1) -1(1) -1(1) -1(1) 3(1) S34 C(13) 21(1) 27(1) 18(1) -3(1) -2(1) 4(1) C(14) C(15) C(16) C(17) C(18) C(19) C(20) C(21) C(22) 22(1) 26(1) 63(2) 43(1) 44(2) 71(2) 72(2) 43(2) 43(2) 21(1) 26(1) 29(1) 30(1) 54(2) 66(2) 60(2) 59(2) 40(2) 20(1) 21(1) 28(1) 22(1) 34(1) 30(1) 42(2) 76(3) 48(2) -4(1) -4(1) 3(1) 4(1) -9(1) -11(1) 8(2) 28(2) 10(1) -5(1) -5(1) -21(1) -13(1) -5(1) -5(1) -28(2) -28(2) -9(1) 2(1) 1(1) -1(1) 0(1) -10(1) -24(2) -25(2) -13(2) 4(1) C(23) C(24) C(25) C(26) C(27) C(28) C(29) C(30) C(31) C(32) 18(1) 19(1) 26(1) 29(1) 29(1) 27(1) 24(1) 24(1) 30(1) 31(1) 23(1) 20(1) 27(1) 36(1) 49(2) 33(1) 32(1) 38(1) 30(1) 61(2) 29(1) 34(1) 23(1) 23(1) 28(1) 34(1) 33(1) 24(1) 27(1) 28(1) -3(1) 0(1) -4(1) -7(1) -9(1) -9(1) 0(1) 0(1) -1(1) -3(1) -5(1) -1(1) -2(1) -7(1) -6(1) 4(1) 5(1) 2(1) 4(1) 0(1) -2(1) -2(1) 5(1) 11(1) 14(1) 0(1) 3(1) 4(1) 4(1) -1(1) C(33) 36(2) 85(3) 26(1) 13(1) -2(1) 11(2) C(34) 42(2) 58(2) 52(2) 26(2) 5(1) 3(1) C(35) 37(2) 39(2) 52(2) 13(1) 7(1) 1(1) B(1) 21(1) 22(1) 25(1) -2(1) -4(1) 2(1) O(7) 109(2) 50(1) 58(2) -2(1) -42(2) -22(1) C(36) 82(3) 47(2) 79(3) 6(2) 7(2) -7(2) ______________________________________________________________________________ Table S-9. Hydrogen Coordinates ( x 104) and Isotropic Displacement Parameters (Å2x 10 3) for 34. ______________________________________________________________________________ __ x y z U(eq) ______________________________________________________________________________ __ S35 H(5) 6036 4612 7223 59 H(1) H(2) H(3) H(4) H(5A) H(6) H(7) H(8) H(9) -2947 -1868 491 -862 -3590 -4022 4147 2798 -271 11872 10033 8778 8998 10359 12060 12309 14538 14455 6716 6037 6508 9208 9629 8875 8051 8042 7871 34 38 32 31 38 34 33 39 36 H(12) H(13) H(14) H(16A) H(16B) H(18) H(19) H(20) H(21) H(22) 4232 3056 4142 7834 6007 5761 7084 10067 11784 10471 10176 8268 6481 5027 5438 7209 8247 7984 6750 5708 6866 6774 7346 8903 9303 10033 10706 10647 9899 9202 29 27 26 47 47 53 65 66 69 53 H(23A) H(23B) H(24) H(25A) H(25B) H(26) H(27A) H(27B) H(31) H(32) 7273 6191 5212 5780 6987 8025 9832 9577 7638 6108 8634 8729 10528 6878 7631 5783 6055 4625 3911 5085 7713 8365 7795 6388 6712 7195 6325 6333 5707 3918 28 28 30 31 31 36 44 44 36 49 H(33) H(34) H(35) H(1A) H(7A) H(36A) 6474 7887 8768 -2420 3398 4202 6827 8447 8442 12786 6906 8416 3297 3586 4522 7767 5475 4923 61 63 54 28 102 107 S36 H(36B) 3994 9240 5510 107 H(36C) 2329 8855 5275 107 Table S-10. Torsion Angles [°] for 34. ________________________________________________________________ N(4)-Mo(1)-N(1)-N(2) 43.40(14) N(4)-Mo(1)-N(1)-C(3) -134.5(2) N(6)-Mo(1)-N(1)-N(2) -38.02(14) N(6)-Mo(1)-N(1)-C(3) 144.0(2) C(11)-Mo(1)-N(1)-N(2) C(11)-Mo(1)-N(1)-C(3) C(12)-Mo(1)-N(1)-N(2) C(12)-Mo(1)-N(1)-C(3) C(13)-Mo(1)-N(1)-N(2) C(13)-Mo(1)-N(1)-C(3) C(24)-Mo(1)-N(1)-N(2) C(24)-Mo(1)-N(1)-C(3) N(1)-Mo(1)-N(4)-N(3) N(1)-Mo(1)-N(4)-C(4) 131.33(15) -46.6(2) -124.46(14) 57.6(2) -160.19(15) 21.9(2) -111.92(14) 70.1(2) -44.67(14) 144.20(19) N(6)-Mo(1)-N(4)-N(3) N(6)-Mo(1)-N(4)-C(4) C(10)-Mo(1)-N(4)-N(3) C(10)-Mo(1)-N(4)-C(4) C(11)-Mo(1)-N(4)-N(3) C(11)-Mo(1)-N(4)-C(4) C(13)-Mo(1)-N(4)-N(3) C(13)-Mo(1)-N(4)-C(4) C(24)-Mo(1)-N(4)-N(3) 39.30(14) -131.83(19) 138.93(16) -32.19(19) -138.55(16) 50.3(2) -101.99(19) 86.9(2) 95.67(18) C(24)-Mo(1)-N(4)-C(4) N(1)-Mo(1)-N(6)-N(5) N(1)-Mo(1)-N(6)-C(7) N(4)-Mo(1)-N(6)-N(5) N(4)-Mo(1)-N(6)-C(7) C(10)-Mo(1)-N(6)-N(5) -75.5(2) 38.05(15) -146.5(2) -43.27(15) 132.2(2) -127.61(16) S37 C(10)-Mo(1)-N(6)-C(7) 47.9(2) C(12)-Mo(1)-N(6)-N(5) C(12)-Mo(1)-N(6)-C(7) C(13)-Mo(1)-N(6)-N(5) C(13)-Mo(1)-N(6)-C(7) C(24)-Mo(1)-N(6)-N(5) C(24)-Mo(1)-N(6)-C(7) N(1)-Mo(1)-C(12)-C(13) N(1)-Mo(1)-C(12)-C(24) N(6)-Mo(1)-C(12)-C(13) 127.97(16) -56.5(2) 116.60(15) -67.9(2) 164.05(16) -20.5(2) -80.76(13) 162.22(12) -163.28(13) N(6)-Mo(1)-C(12)-C(24) C(10)-Mo(1)-C(12)-C(13) C(10)-Mo(1)-C(12)-C(24) C(11)-Mo(1)-C(12)-C(13) C(11)-Mo(1)-C(12)-C(24) C(13)-Mo(1)-C(12)-C(24) C(24)-Mo(1)-C(12)-C(13) N(1)-Mo(1)-C(13)-C(12) N(1)-Mo(1)-C(13)-C(14) N(4)-Mo(1)-C(13)-C(12) 79.70(12) 98.58(14) -18.45(14) 12.79(15) -104.23(13) -117.02(18) 117.02(18) 97.17(13) -152.85(18) 153.67(15) N(4)-Mo(1)-C(13)-C(14) N(6)-Mo(1)-C(13)-C(12) N(6)-Mo(1)-C(13)-C(14) C(10)-Mo(1)-C(13)-C(12) C(10)-Mo(1)-C(13)-C(14) C(11)-Mo(1)-C(13)-C(12) C(11)-Mo(1)-C(13)-C(14) C(12)-Mo(1)-C(13)-C(14) C(24)-Mo(1)-C(13)-C(12) C(24)-Mo(1)-C(13)-C(14) -96.3(2) 19.53(15) 129.52(16) -92.01(14) 17.97(19) -166.71(16) -56.72(17) 110.0(2) -37.28(13) 72.71(17) N(1)-Mo(1)-C(24)-C(12) N(1)-Mo(1)-C(24)-C(23) N(4)-Mo(1)-C(24)-C(12) N(4)-Mo(1)-C(24)-C(23) N(6)-Mo(1)-C(24)-C(12) N(6)-Mo(1)-C(24)-C(23) -21.54(15) -133.40(17) -152.41(13) 95.7(2) -96.21(13) 151.94(19) S38 C(10)-Mo(1)-C(24)-C(12) 161.04(14) C(10)-Mo(1)-C(24)-C(23) C(11)-Mo(1)-C(24)-C(12) C(11)-Mo(1)-C(24)-C(23) C(12)-Mo(1)-C(24)-C(23) C(13)-Mo(1)-C(24)-C(12) C(13)-Mo(1)-C(24)-C(23) C(16)-O(3)-C(15)-O(4) C(16)-O(3)-C(15)-N(7) C(15)-O(3)-C(16)-C(17) 49.19(18) 87.14(14) -24.7(2) -111.9(2) 37.09(12) -74.77(18) -3.3(4) 177.4(2) 178.4(2) Mo(1)-N(1)-N(2)-C(1) Mo(1)-N(1)-N(2)-B(1) C(3)-N(1)-N(2)-C(1) C(3)-N(1)-N(2)-B(1) Mo(1)-N(1)-C(3)-C(2) N(2)-N(1)-C(3)-C(2) N(1)-N(2)-C(1)-C(2) B(1)-N(2)-C(1)-C(2) N(1)-N(2)-B(1)-N(3) N(1)-N(2)-B(1)-N(5) -178.88(14) -2.6(2) -0.4(2) 175.93(18) 178.60(16) 0.5(2) 0.2(3) -175.8(2) -56.1(2) 61.4(2) C(1)-N(2)-B(1)-N(3) C(1)-N(2)-B(1)-N(5) C(6)-N(3)-N(4)-Mo(1) C(6)-N(3)-N(4)-C(4) B(1)-N(3)-N(4)-Mo(1) B(1)-N(3)-N(4)-C(4) N(4)-N(3)-C(6)-C(5) B(1)-N(3)-C(6)-C(5) N(4)-N(3)-B(1)-N(2) N(4)-N(3)-B(1)-N(5) 119.5(2) -123.0(2) -172.16(14) 0.9(2) 4.3(2) 177.33(18) -0.8(3) -176.9(2) 55.8(2) -63.1(2) C(6)-N(3)-B(1)-N(2) C(6)-N(3)-B(1)-N(5) Mo(1)-N(4)-C(4)-C(5) N(3)-N(4)-C(4)-C(5) C(9)-N(5)-N(6)-Mo(1) C(9)-N(5)-N(6)-C(7) -128.5(2) 112.6(2) 171.66(16) -0.5(2) 176.45(15) -0.3(2) S39 B(1)-N(5)-N(6)-Mo(1) 3.1(3) B(1)-N(5)-N(6)-C(7) N(6)-N(5)-C(9)-C(8) B(1)-N(5)-C(9)-C(8) N(6)-N(5)-B(1)-N(2) N(6)-N(5)-B(1)-N(3) C(9)-N(5)-B(1)-N(2) C(9)-N(5)-B(1)-N(3) Mo(1)-N(6)-C(7)-C(8) N(5)-N(6)-C(7)-C(8) -173.6(2) 0.3(3) 173.1(2) -61.3(3) 57.3(3) 126.7(2) -114.8(2) -175.77(17) 0.2(3) C(15)-N(7)-C(14)-C(13) C(15)-N(7)-C(14)-C(25) C(23)-N(7)-C(14)-C(13) C(23)-N(7)-C(14)-C(25) C(14)-N(7)-C(15)-O(3) C(14)-N(7)-C(15)-O(4) C(23)-N(7)-C(15)-O(3) C(23)-N(7)-C(15)-O(4) C(14)-N(7)-C(23)-C(24) C(15)-N(7)-C(23)-C(24) 149.44(19) -90.5(2) -42.3(2) 77.7(2) 174.06(19) -5.3(3) 6.4(3) -173.0(2) 41.0(3) -151.1(2) C(28)-N(8)-C(27)-C(26) C(31)-N(8)-C(27)-C(26) C(27)-N(8)-C(28)-O(6) C(27)-N(8)-C(28)-C(29) C(31)-N(8)-C(28)-O(6) C(31)-N(8)-C(28)-C(29) C(27)-N(8)-C(31)-N(9) C(28)-N(8)-C(31)-N(9) C(31)-N(9)-C(30)-C(29) C(31)-N(9)-C(30)-C(32) 99.4(3) -80.4(3) -0.9(4) 178.5(2) 178.9(2) -1.7(3) 179.2(2) -0.6(4) 1.4(4) -179.7(2) C(30)-N(9)-C(31)-N(8) N(2)-C(1)-C(2)-C(3) C(1)-C(2)-C(3)-N(1) N(4)-C(4)-C(5)-C(6) C(4)-C(5)-C(6)-N(3) N(6)-C(7)-C(8)-C(9) 0.9(4) 0.1(3) -0.4(3) 0.1(3) 0.5(3) 0.0(3) S40 C(7)-C(8)-C(9)-N(5) -0.2(3) Mo(1)-C(12)-C(13)-C(14) C(24)-C(12)-C(13)-Mo(1) C(24)-C(12)-C(13)-C(14) Mo(1)-C(12)-C(24)-C(23) C(13)-C(12)-C(24)-Mo(1) C(13)-C(12)-C(24)-C(23) Mo(1)-C(13)-C(14)-N(7) Mo(1)-C(13)-C(14)-C(25) C(12)-C(13)-C(14)-N(7) -113.43(17) 70.68(17) -42.8(3) 112.6(2) -70.76(17) 41.9(3) -34.5(2) -156.55(14) 43.3(3) C(12)-C(13)-C(14)-C(25) N(7)-C(14)-C(25)-C(26) C(13)-C(14)-C(25)-C(26) O(3)-C(16)-C(17)-C(18) O(3)-C(16)-C(17)-C(22) C(16)-C(17)-C(18)-C(19) C(22)-C(17)-C(18)-C(19) C(16)-C(17)-C(22)-C(21) C(18)-C(17)-C(22)-C(21) C(17)-C(18)-C(19)-C(20) -78.8(2) 63.3(2) -174.47(18) 79.3(3) -97.5(3) -177.3(3) -0.5(4) 177.7(3) 0.9(4) -0.6(5) C(18)-C(19)-C(20)-C(21) C(19)-C(20)-C(21)-C(22) C(20)-C(21)-C(22)-C(17) N(7)-C(23)-C(24)-Mo(1) N(7)-C(23)-C(24)-C(12) C(14)-C(25)-C(26)-O(5) C(14)-C(25)-C(26)-C(27) O(5)-C(26)-C(27)-N(8) C(25)-C(26)-C(27)-N(8) O(6)-C(28)-C(29)-C(30) 1.2(6) -0.8(6) -0.3(5) 37.6(2) -40.8(3) 59.8(3) -178.84(19) 74.6(3) -48.6(3) -177.0(2) O(6)-C(28)-C(29)-C(35) N(8)-C(28)-C(29)-C(30) N(8)-C(28)-C(29)-C(35) C(28)-C(29)-C(30)-N(9) C(28)-C(29)-C(30)-C(32) C(35)-C(29)-C(30)-N(9) 3.9(4) 3.6(3) -175.5(2) -3.7(4) 177.4(2) 175.5(2) S41 C(35)-C(29)-C(30)-C(32) -3.5(4) C(28)-C(29)-C(35)-C(34) -179.7(3) C(30)-C(29)-C(35)-C(34) 1.2(4) N(9)-C(30)-C(32)-C(33) -176.3(3) C(29)-C(30)-C(32)-C(33) 2.7(4) C(30)-C(32)-C(33)-C(34) 0.3(5) C(32)-C(33)-C(34)-C(35) -2.7(5) C(33)-C(34)-C(35)-C(29) 1.9(5) ________________________________________________________________ Symmetry transformations used to generate equivalent atoms: Table S-11. Hydrogen Bonds for 34 [Å and °]. ____________________________________________________________________________ D-H...A d(D-H) d(H...A) d(D...A) <(DHA) ____________________________________________________________________________ O(5)-H(5)...O(4) 0.8200 2.1400 2.869(3) 148.00 O(7)-H(7A)...N(9)#1 0.8200 2.0300 2.849(3) 176.00 C(8)-H(8)...O(4)#2 0.9300 2.4500 3.250(3) 145.00 C(13)-H(13)...O(7) 0.9800 2.5800 3.421(3) 144.00 C(14)-H(14)...O(4) 0.9800 2.4600 2.800(3) 100.00 C(23)-H(23B)...O(1) 0.9700 2.5500 3.118(3) 117.00 C(23)-H(23B)...O(3) 0.9700 2.2500 2.624(3) 102.00 C(25)-H(25A)...O(7) 0.9700 2.5100 3.419(4) 156.00 C(25)-H(25A)...N(8) 0.9700 2.6200 2.943(3) 100.00 C(27)-H(27A)...O(6) 0.9700 2.3600 2.753(4) 103.00 ____________________________________________________________________________ Symmetry transformations used to generate equivalent atoms: #1 x+1, y+1, z+1 #2 1 5. X-Ray Diffraction Study of ()-35 A suitable crystal of 35 was obtained by diffusion recrystallization from CH2Cl2 and hexanes. The crystals was mounted onto a nylon fibre with paratone oil and placed under a cold stream at 173(2)K. Single crystal X-ray data were collected on a Bruker APEX2 diffractometer with 1.6 kW graphite monochromated Mo radiations. The detector to crystal distance was 5.1 cm. The S42 data collection was performed using ω scans with different φ values yielding data in the range 1.53 to 30.09° with an average completeness of 96.0%. The frames were integrated with the SAINT v7.68a.2 Amulti-scanabsorption correctionwas carried out using the program SADABS V2008-1.3 The structure was solved and refined with Olex2,6 a graphical interface to SHELX.4 In the final cycles of refinement all non-hydrogen atoms were refined anisotropically. ORTEP Diagram of 35. Table S-12. Crystal Data and Structure Refinement for 35. Identification code ks1165 Empirical formula C16H16N2O3 Formula weight 284.31 Temperature 173.18 K Wavelength Crystal system Space group Unit cell dimensions 0.71073 Å Monoclinic P 21/c a = 13.934(2) Å b = 11.8330(18) Å c = 8.6474(14) Å S43 α= 90°. β= 107.603(3)°. γ = 90°. Volume 1359.1(4) Å3 Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections 4 1.389 Mg/m3 0.097 mm-1 600 0.331 x 0.296 x 0.046 mm3 1.53 to 30.09°. -19<=h<=15, -16<=k<=16, -12<=l<=12 15669 3847 [R(int) = 0.0521] Completeness to theta = 30.09° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole 96.0 % Semi-empirical from equivalents 0.7460 and 0.4942 Full-matrix least-squares on F2 3847 / 0 / 190 1.045 R1 = 0.0594, wR2 = 0.1622 R1 = 0.0949, wR2 = 0.1853 0.358 and -0.263 e.Å-3 Table S-13. Atomic Coordinates ( x 104) and Equivalent Isotropic Displacement Parameters (Å2x 103) for 35. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______________________________________________________________________________ __ x y z U(eq) ______________________________________________________________________________ __ C(1) -2460(1) 1381(2) -373(2) 46(1) C(2) -2445(1) 2642(2) -188(2) 46(1) C(3) C(4) C(5) C(6) C(7) C(8) -1719(1) -913(1) -1146(1) -120(2) 596(1) 1510(1) 3180(2) 2538(2) 1285(1) 783(2) 1576(2) 1864(2) S44 888(2) 2095(2) 2076(2) 2860(3) 2341(2) 3748(2) 46(1) 44(1) 42(1) 52(1) 44(1) 45(1) C(9) 2337(1) 3621(1) 3281(2) 44(1) C(10) C(11) C(12) C(13) C(14) C(15) C(16) N(1) N(2) 3664(1) 4390(2) 5103(2) 5097(2) 4382(1) 3672(1) 2942(1) 2283(1) 2967(1) 3654(2) 4272(2) 3730(2) 2555(2) 1931(2) 2475(1) 1814(1) 2462(1) 4230(1) 2269(2) 1812(2) 1296(2) 1154(2) 1567(2) 2158(2) 2676(2) 3230(2) 2836(2) 44(1) 55(1) 62(1) 60(1) 50(1) 40(1) 41(1) 39(1) 47(1) O(1) O(2) O(3) -1509(1) 35(1) 2888(1) 888(1) 2588(1) 784(1) 448(1) 1729(2) 2654(2) 43(1) 49(1) 55(1) Table S-14. Bond Lengths [Å] and Angles [°] for 35. _____________________________________________________ O(1)-C(1) 1.425(2) O(1)-C(5) 1.424(2) O(2)-C(4) 1.450(2) O(2)-C(7) O(3)-C(16) N(1)-C(8) N(1)-C(9) N(1)-C(16) N(2)-C(9) N(2)-C(10) C(1)-C(2) C(2)-C(3) 1.441(2) 1.221(2) 1.467(3) 1.374(2) 1.389(2) 1.281(3) 1.391(2) 1.501(3) 1.313(3) C(3)-C(4) C(4)-C(5) C(5)-C(6) C(6)-C(7) C(7)-C(8) C(10)-C(11) 1.490(3) 1.516(2) 1.506(3) 1.532(3) 1.511(3) 1.399(3) S45 C(10)-C(15) 1.399(2) C(11)-C(12) C(12)-C(13) C(13)-C(14) C(14)-C(15) C(15)-C(16) C(1)-H(1A) C(1)-H(1B) C(2)-H(2) C(3)-H(3) 1.367(3) 1.396(3) 1.371(3) 1.401(3) 1.456(3) 0.9900 0.9900 0.9500 0.9500 C(4)-H(4) C(5)-H(5) C(6)-H(6A) C(6)-H(6B) C(7)-H(7) C(8)-H(8A) C(8)-H(8B) C(9)-H(9) C(11)-H(11) C(12)-H(12) 1.0000 1.0000 0.9900 0.9900 1.0000 0.9900 0.9900 0.9500 0.9500 0.9500 C(13)-H(13) C(14)-H(14) C(1)-O(1)-C(5) C(4)-O(2)-C(7) C(8)-N(1)-C(9) C(8)-N(1)-C(16) C(9)-N(1)-C(16) C(9)-N(2)-C(10) O(1)-C(1)-C(2) C(1)-C(2)-C(3) 0.9500 0.9500 110.88(13) 108.31(13) 120.66(15) 117.53(14) 121.80(16) 116.43(15) 111.91(15) 122.71(17) C(2)-C(3)-C(4) O(2)-C(4)-C(3) O(2)-C(4)-C(5) C(3)-C(4)-C(5) O(1)-C(5)-C(4) O(1)-C(5)-C(6) 120.37(16) 111.71(14) 104.11(14) 112.18(15) 110.14(13) 108.67(15) S46 C(4)-C(5)-C(6) 102.15(15) C(5)-C(6)-C(7) O(2)-C(7)-C(6) O(2)-C(7)-C(8) C(6)-C(7)-C(8) N(1)-C(8)-C(7) N(1)-C(9)-N(2) N(2)-C(10)-C(11) N(2)-C(10)-C(15) C(11)-C(10)-C(15) 103.85(16) 106.77(16) 109.84(14) 111.57(16) 112.41(14) 125.98(17) 119.01(16) 122.27(16) 118.72(17) C(10)-C(11)-C(12) C(11)-C(12)-C(13) C(12)-C(13)-C(14) C(13)-C(14)-C(15) C(10)-C(15)-C(14) C(10)-C(15)-C(16) C(14)-C(15)-C(16) O(3)-C(16)-N(1) O(3)-C(16)-C(15) N(1)-C(16)-C(15) 120.48(19) 120.6(2) 120.0(2) 119.76(19) 120.32(17) 119.59(16) 120.09(16) 120.83(17) 125.26(17) 113.91(14) O(1)-C(1)-H(1A) O(1)-C(1)-H(1B) C(2)-C(1)-H(1A) C(2)-C(1)-H(1B) H(1A)-C(1)-H(1B) C(1)-C(2)-H(2) C(3)-C(2)-H(2) C(2)-C(3)-H(3) C(4)-C(3)-H(3) O(2)-C(4)-H(4) 109.00 109.00 109.00 109.00 108.00 119.00 119.00 120.00 120.00 110.00 C(3)-C(4)-H(4) C(5)-C(4)-H(4) O(1)-C(5)-H(5) C(4)-C(5)-H(5) C(6)-C(5)-H(5) C(5)-C(6)-H(6A) 110.00 110.00 112.00 112.00 112.00 111.00 S47 C(5)-C(6)-H(6B) 111.00 C(7)-C(6)-H(6A) C(7)-C(6)-H(6B) H(6A)-C(6)-H(6B) O(2)-C(7)-H(7) C(6)-C(7)-H(7) C(8)-C(7)-H(7) N(1)-C(8)-H(8A) N(1)-C(8)-H(8B) C(7)-C(8)-H(8A) 111.00 111.00 109.00 110.00 110.00 110.00 109.00 109.00 109.00 C(7)-C(8)-H(8B) H(8A)-C(8)-H(8B) N(1)-C(9)-H(9) N(2)-C(9)-H(9) C(10)-C(11)-H(11) C(12)-C(11)-H(11) C(11)-C(12)-H(12) C(13)-C(12)-H(12) C(12)-C(13)-H(13) C(14)-C(13)-H(13) 109.00 108.00 117.00 117.00 120.00 120.00 120.00 120.00 120.00 120.00 C(13)-C(14)-H(14) 120.00 C(15)-C(14)-H(14) 120.00 _____________________________________________________________ Symmetry transformations used to generate equivalent atoms: Table S-15. Anisotropic Displacement Parameters (Å2x 103) for 35. The anisotropic displacement factor exponent takes the form: -2ᴫ2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ C(1) C(2) C(3) C(4) C(5) C(6) 38(1) 38(1) 44(1) 46(1) 42(1) 46(1) 44(1) 41(1) 36(1) 41(1) 40(1) 46(1) 51(1) 56(1) 58(1) 44(1) 43(1) 57(1) -1(1) 6(1) 1(1) -2(1) 3(1) 12(1) S48 6(1) 11(1) 15(1) 10(1) 10(1) 5(1) -1(1) 3(1) -1(1) -9(1) -6(1) -6(1) C(7) 41(1) 42(1) 42(1) 4(1) 4(1) -4(1) C(8) C(9) C(10) C(11) C(12) C(13) C(14) C(15) C(16) 41(1) 45(1) 40(1) 50(1) 44(1) 42(1) 42(1) 37(1) 38(1) 48(1) 36(1) 41(1) 53(1) 82(2) 87(2) 59(1) 40(1) 37(1) 41(1) 44(1) 42(1) 55(1) 55(1) 48(1) 43(1) 37(1) 42(1) 1(1) -5(1) 0(1) 6(1) 15(1) 7(1) 0(1) -1(1) -4(1) 6(1) 4(1) 0(1) 5(1) 8(1) 9(1) 2(1) 0(1) 1(1) -4(1) 4(1) -2(1) -10(1) -8(1) 11(1) 11(1) 2(1) 1(1) N(1) N(2) O(1) O(2) O(3) 36(1) 47(1) 39(1) 38(1) 58(1) 36(1) 37(1) 38(1) 44(1) 34(1) 41(1) 52(1) 47(1) 59(1) 71(1) -3(1) -3(1) -2(1) 13(1) -6(1) 4(1) 6(1) 8(1) 6(1) 14(1) -1(1) 0(1) 0(1) -6(1) 0(1) Table S-16. Hydrogen Coordinates ( x 104) and Isotropic Displacement Parameters (Å2x 10 3) for 35. ______________________________________________________________________________ __ x y z U(eq) ______________________________________________________________________________ __ H(1A) H(1B) H(2) H(3) -2980 -2645 -2982 -1708 1060 1188 3070 3983 67 -1540 -879 898 55 55 55 56 H(4) H(5) H(6A) H(6B) H(7) H(8A) -822 -1624 -79 38 814 1301 2849 1110 4 768 1212 2343 3206 2704 2465 4055 1459 4529 53 51 62 62 52 54 S49 H(8B) 1802 1159 4314 54 H(9) H(11) H(12) H(13) H(14) 1864 4387 5609 5587 4370 4007 5074 4157 2188 1132 3682 1861 1031 771 1454 52 66 74 72 60 Table S-17. Torsion Angles [°] for 35. ________________________________________________________________ C(5)-O(1)-C(1)-C(2) C(1)-O(1)-C(5)-C(4) C(1)-O(1)-C(5)-C(6) C(4)-O(2)-C(7)-C(8) C(4)-O(2)-C(7)-C(6) C(7)-O(2)-C(4)-C(5) C(7)-O(2)-C(4)-C(3) C(8)-N(1)-C(9)-N(2) C(16)-N(1)-C(8)-C(7) C(9)-N(1)-C(16)-C(15) 50.10(18) -66.18(18) -177.31(14) -111.65(16) 9.47(18) -30.25(16) -151.52(14) -178.77(17) -83.41(19) -0.4(2) C(9)-N(1)-C(16)-O(3) C(8)-N(1)-C(16)-C(15) C(16)-N(1)-C(9)-N(2) C(8)-N(1)-C(16)-O(3) C(9)-N(1)-C(8)-C(7) C(9)-N(2)-C(10)-C(15) C(10)-N(2)-C(9)-N(1) C(9)-N(2)-C(10)-C(11) O(1)-C(1)-C(2)-C(3) 179.34(16) 178.88(14) 0.5(3) -1.4(2) 95.90(19) 1.1(3) -0.8(3) -178.07(16) -14.1(3) C(1)-C(2)-C(3)-C(4) C(2)-C(3)-C(4)-C(5) C(2)-C(3)-C(4)-O(2) O(2)-C(4)-C(5)-C(6) C(3)-C(4)-C(5)-O(1) O(2)-C(4)-C(5)-O(1) -5.7(3) -9.4(3) 107.1(2) 38.70(17) 44.3(2) -76.63(17) S50 C(3)-C(4)-C(5)-C(6) 159.66(16) C(4)-C(5)-C(6)-C(7) O(1)-C(5)-C(6)-C(7) C(5)-C(6)-C(7)-C(8) C(5)-C(6)-C(7)-O(2) O(2)-C(7)-C(8)-N(1) C(6)-C(7)-C(8)-N(1) C(11)-C(10)-C(15)-C(14) C(11)-C(10)-C(15)-C(16) C(15)-C(10)-C(11)-C(12) -32.35(18) 84.04(17) 135.10(17) 15.09(19) -71.49(19) 170.32(15) -1.3(2) 178.07(16) -1.2(3) N(2)-C(10)-C(15)-C(14) N(2)-C(10)-C(11)-C(12) N(2)-C(10)-C(15)-C(16) C(10)-C(11)-C(12)-C(13) C(11)-C(12)-C(13)-C(14) C(12)-C(13)-C(14)-C(15) C(13)-C(14)-C(15)-C(10) C(13)-C(14)-C(15)-C(16) C(10)-C(15)-C(16)-N(1) C(14)-C(15)-C(16)-O(3) 179.47(16) 178.04(16) -1.1(3) 2.6(3) -1.4(3) -1.1(3) 2.5(3) -176.92(16) 0.7(2) 0.4(3) C(14)-C(15)-C(16)-N(1) -179.86(15) C(10)-C(15)-C(16)-O(3) -179.01(17) ________________________________________________________________ Symmetry transformations used to generate equivalent atoms: Table S-18. Hydrogen Bonds for 35 [Å and °]. ____________________________________________________________________________ D-H...A d(D-H) d(H...A) d(D...A) <(DHA) ____________________________________________________________________________ C(1)-H(1B)...O(3)#1 0.9900 2.5100 3.178(2) 125.00 C(9)-H(9)...O(1)#2 0.9500 2.4500 3.241(2) 141.00 ____________________________________________________________________________ Symmetry transformations used to generate equivalent atoms: #1 2 #2 x, y, z S51 6. Bioassay Methods In vitro susceptibility P. knowlesi:The H strain of P. knowlesihas been adapted to in vitro culture using Macacamulatta supplemented (rhesus monkey) RBCs essentially as described,7 but the media was with 10% human AB serum from the Tennessee Blood Bank. Compounds: Chloroquine phosphate (Sigma) and mefloquine (Sigma) were used as controls and were prepared in 70% ethanol as described.8 Six isofebrifugin analogs were dissolved in 70% 200-proof pharmaceutical grade ethanol (ACROS) to prepare stock solutions of 1 mg/ml. Further dilutions were obtained using supplemented RPMI-1640 (GIBCO), lacking serum, sodium bicarbonate, hypoxanthine and gentamicin. Compound 185 was dissolved in a DMSO/ethanol combination. Well with and without analogs were set up in duplicate. Incorporation assay: Parasite inoculum was prepared by mixing parasitized blood, uninfected rhesus RBCs and culture medium (deficient in hypoxanthine and gentamicin) to a final concentration of 1% parasitemia and 1% haematocrit. A negative control was prepared by diluting uninfected erythrocytes to 1% haematocrit in culture medium. Positive controls included parasitized RBCs without drug and parasitized RBCs with DMSO/ethanol dilutions as used for drug 185. [3H]-labeled hypoxanthine was added at 12 h and the culture was collected 12 h later. [3H] uptake was measured by using a scintillation spectrophotometer (WallacOy 1450 MicroBeta reader). 7 Kocken, C. H.; Ozwara, H.; van der Wel, A.; Beetsma, A. L.; Mwenda, J. M.; Thomas, A. W., Plasmodium knowlesi provides a rapid in vitro and in vivo transfection system that enables double-crossover gene knockout studies. Infect Immun. 2002, 70, 655-660. 8 Desjardins, R. E.; Canfield, C. J.; Haynes, J. D.; Chulay, J. D., Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother. 1979,16, 710-718. S52 Data Analysis: The counts were imported to Microsoft Excel and analyzed with its add-in XLFit software for curve fitting and data analysis (IDBS). The sigmoidal model 601 was utilized to determine the dose-response curve and to calculate the concentration causing 50% growth inhibition (IC50) for each compound. The IC50 was calculated for each drug concentration as Log2 by comparison of the radioactivity incorporated (cpm) in the treated culture with half of the average of cpms in the control culture maintained on the same plate. The IC50 in Log2 units was converted to ng/ml [=Power (2 IC50 Log2)] and M [IC50 ng/ml/MW] concentration as needed. The linear correlation coefficient has been included in this analysis to demonstrate variability between triplicate wells and curve fitting. Results: The in vitro antimalarial activity of isofebrifugine analogs was determined as IC50 values for the inhibition of proliferation of the P. knowlesi H strain. Data shown below correspond to the average of two experiments. Modest antimalarial activity was observed with analogs 37, 37' and 38 showing inhibitory concentrations under 12 mM, activity that is higher than the inhibitory concentration achieved with chloroquine and mefloquine, used here as controls. The linear correlation coefficient (Lin Corel Cf) has been included in this analysis to demonstrate variability between duplicate wells and curve fitting. b Re-suspended in ethanol and DMSO. Table S-19. CQ MQ 38 38' 37 37' 40* IC50M 0.010 0.015 11.435 13.620 10.285 11.325 26.790 StdDev 0.000 0.007 0.870 1.739 0.007 0.460 0.863 Lin Corel Cf 0.98 0.96 0.94 0.94 0.95 0.96 0.87 * Re-suspended in ethanol and DMSO S53
© Copyright 2026 Paperzz