Regio- and Stereospecific Uncatalyzed Reactions of Electron

Regio- and Stereospecific Uncatalyzed Reactions of
Electron-rich Arenes and Olefins at
Organomolybdenum Enantiomeric Scaffolds.
Wenyong Chen,† Kasinath Sana, Yi Jiang,‡ Esmerelda V. S. Meyer,b Stacey Lapp,b Mary R.
Galinski,b,c and Lanny S. Liebeskind*a
[email protected]
Table of Contents
General Methods
1. Preparation of Substrates and Nucleophiles
2. NMR Study of Uncatalyzed Reaction
3. X-Ray Diffraction Study of ()-26
4. X-Ray Diffraction Study of ()-34
5. X-Ray Diffraction Study of ()-35
6. Bioassay Methods
S1
S3
S9
S11
S21
S42
S51
General Methods
All reactions were performed under an atmosphere of dry argon in oven-dried glassware unless
otherwise noted. Solvents (THF, DMSO, DMF, MeOH, CH2Cl2 and toluene) for reaction media
were ACS reagent grade and purchased from Aldrich. Solvents were dried over 4 Å molecular
sieves and titrated for water level with a Fisher Coulomatic K-F titrator before using. Hexanes,
S1
ethyl acetate (EtOAc), dichloromethane (DCM) and diethyl ether (Et2O) used for extraction and
chromatography were obtained from EM Science and used as purchased. Brine refers to a
saturated aqueous solution of NaCl. Analytical thin-layer chromatography (TLC) was carried out
using Merck Kieselgel 0.25 mm 60 F254 plates with visualization by UV or phosphomolybdic
acid. 1H NMR and 13C NMR spectra were recorded on a VNMR 400 (400 MHz 1H, 100 MHz
13
C), Varian INOVA 400 (400 MHz 1H, 100 MHz 13C), and Varian INOVA 600 (600 MHz 1H,
150 MHz 13C) instruments in CDCl3, with the solvent residual peak as internal reference (CDCl3:
1
H = 7.26 ppm, 13C = 77.0 ppm;) unless otherwise stated. Data are reported in the following
order: chemical shifts (δ); multiplicities br (broadened), s (singlet), d (doublet), t (triplet), q
(quartet), m (multiplet)); coupling constants, J (Hz); integration. Infrared (IR) spectroscopy was
performed on an ASI ReactIR 1000 spectrometer. Peaks are reported (cm-1) with the following
relative intensities: s (strong, 67-100%), m (medium, 40-67%), w (weak 20-40%), and br
(broad). Uncalibrated melting points were taken on a Thomas-Hoover melting point apparatus in
open capillary tubes. Since all of the Tp molybdenum complexes decompose over 180-200 oC,
melting points are not useful and are not shown in the experimental section. High-resolution
mass spectra were obtained on a JEOL JMS-SX102/SX102A/E instrument. Optical rotations
were measured with Perkin-Elmer Model 341polarimeter. HPLC was performed using an
Agilent 1100 Series with UV detector (254 nm or 210 nm) and Daicel® Chiralpak AS-RH,
Chiralpak AD-RH, Chiralcel OJ-RH, Chiralcel OD-RH, or Agilent Eclipse XDB-C8 columns.
Samples for HPLC analysis were prepared by dissolving 1-2 mg of the pure material in
approximately 0.5 mL of acetonitrile. One microliter (1 μL) of the solution was injected for
analysis.
S2
Synthesis of S1 and S2 were accomplished according to literature procedures.1
1. Preparation of Substrates
()-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(-2,3,4)-1-t-butoxycarbonyl-5-hydroxy-5,6dihydro-2H-pyridin-2-yl]molybdenum, ()-S3
To a solution of TpMo(CO)2(5-oxo-3-6H-N-Boc pyridinyl) complex ()-2' (500 mg, 0.88
mmol, 1.0 equiv) in THF (20 mL) was added DIBAL (1.0 M in hexane, 2.2 mL, 2.18 mmol, 2.5
equiv) at 0 oC. The reaction mixture was stirred at 0 oC for 20 minutes, and then quenched with
potassium sodium tartrate tetrahydrate (760 mg, 2.56 mmol, 3.0 equiv) and H2O (10 mL). The
mixture was poured into a separatory funnel containing EtOAc (15 mL) and the layers were
separated. The aqueous layer was extracted by EtOAc (2 x 25 mL), and the combined organic
layers were dried over Na2SO4, filtered, and concentrated. Flash chromatography over silica gel
with hexanes-EtOAc (2:1) afforded (S3 (452 mg, 0.80 mmol, 91%) as an orange solid. TLC
(Rf = 0.27, 2:1 hexanes:EtOAc). 1H NMR (a mixture of two rotamers) (400 MHz, CDCl3)  8.42
(d, J = 1.2 Hz, 0.4 H), 8.40 (d, J = 1.2 Hz, 0.6 H), 8.18 (d, J = 1.2 Hz, 0.6 H), 7.96 (d, J = 1.2 Hz,
0.4 H), 7.82 (d, J = 0.8 Hz, 0.4 H), 7.77 (d, J = 1.2 Hz, 0.6 H), 7.62 (d, J = 2.0 Hz, 0.4 H), 7.56
(br s, 1.6 H), 7.46 (br s, 1 H), 7.20 (d, J = 5.2 Hz, 0.6 H), 7.00 (d, J = 5.6 Hz, 0.4 H), 6.23 (br s,
1
Chen, W.; Liebeskind, L. S. J. Am. Chem. Soc. 2009, 131, 12546
S3
0.4 H), 6.11-6.16 (m, 2.6 H), 4.67-4.79 (m, 2 H), 3.75 (dd, J = 12.0 Hz, 7.2 Hz, 0.4 H), 3.63 (dd,
J = 12.4 Hz, 6.8 Hz, 0.6 H), 3.31 (t, J = 6.8 Hz, 0.6 H), 3.25 (t, J = 6.8 Hz, 0.4 H), 1.75-1.85 (m,
1 H), 1.59 (s, 3.6 H), 1.47 (s, 5.4 H). 13C NMR (100 MHz, CDCl3) δ232.7, 231.6, 224.1, 223.8,
154.6, 154.0, 146.6, 146.4, 143.8, 142.2, 141.1, 140.6, 136.0, 135.9, 135.82, 135.76, 134.3,
105.8, 105.7, 105.5, 105.4, 105.2, 94.4, 92.2, 81.5, 81.1, 69.5, 67.9, 67.8, 67.6, 57.2, 56.6, 47.4,
46.6, 28.1, 27.9, 27.4. IR (cm-1) 3420 (w), 2980 (w), 2482 (w), 1942 (s), 1845 (s), 1695 (s).
HRMS (ESI) Calcd. for C21H26BMoN7O5 ([M+Na]+): 588.1035. Found: 588.1038.
Ethyl 1-methyl-1H-indole-2-carboxylate, S4
To a solution of ethyl 2-indolecaboxylate (2 g, 10.6 mmol, 1.0 equiv) in DMF (50 mL)
was added NaH (636 mg, 15.9 mmol, 1.5 equiv) and methyl iodide (2.26 g, 15.9 mmol, 1.5
equiv). The reaction mixture was stirred at room temperature for 5 hours, and then was added
NaH (218 mg, 5.3 mmol, 0.5 equiv) and methyl iodide (0.75 g, 5.3 mmol, 1.5 equiv). The
mixture was left to stir at room temperature overnight and the quenched with brine. The mixture
was poured into a separatory funnel containing EtOAc (25 mL), and the layers were separated.
The aqueous layer was extracted by EtOAc (2 x 25 mL), and the combined organic layers were
washed by brine, dried over Na2SO4, filtered, and concentrated. Flash chromatography over
silica gel with hexanes-EtOAc (6:1) afforded S4 (2.1 g, 10.3 mmol, 97%) as a white solid. TLC
(Rf = 0.33, 6:1 hexanes:EtOAc). Mp 60-61oC.
1
H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 8.0
Hz, 1 H), 7.33-7.41 (m, 2 H), 7.32 (s, 1 H), 7.16 (ddd, J = 8.0 Hz, 6.4 Hz, 1.6 Hz, 1 H), 4.38 (q, J
S4
= 7.6 Hz, 2 H), 4.09 (s, 3 H), 1.42 (t, J = 7.2 Hz, 3 H).
13
C NMR (100 MHz, CDCl3) δ 162.2,
139.6, 128.0, 125.8, 124.9, 122.5, 120.5, 110.2, 110.0, 60.5, 31.6, 14.3. IR (cm-1) 3053 (w), 2984
(w), 1706 (s), 1613 (w), 1517 (m). HRMS (ESI) Calcd. for C12H14NO2 ([M+H]+): 204.1019.
Found: 204.1019.
1-Methyl-1H-indole-2-carbaldehyde, S5
To a solution of S4 (2.1 g, 10.3 mmol, 1.0 equiv) in THF (25 mL) was slowly added DIBAL
(1.0 M in hexane, 25.8 mL, 25.8 mmol, 2.5 equiv) at -78oC. The reaction mixture was stirred at 78oC for 30 minutes, and then was slowly warmed up to room temperature. The reaction was
quenched with potassium sodium tartrate tetrahydrate (9.2 g, 31 mmol, 3.0 equiv) and H2O (10
mL). The mixture was poured into a separatory funnel containing EtOAc (40 mL) and the layers
were separated. The aqueous layer was extracted by EtOAc (2 x 35 mL), and the combined
organic layers were dried over Na2SO4, filtered, and concentrated. Flash chromatography over
silica gel with hexanes-EtOAc (2:1) afforded the alcohol (1.6 g, 9.78 mmol, 95%) as a white
solid. The alcohol: TLC (Rf = 0.34, 2:1 hexanes:EtOAc). Mp 100-101oC. 1H NMR (400 MHz,
CDCl3) δ 7.60 (d, J = 7.6 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.25 (t, J = 8.0 Hz, 1H), 7.12 (t, J =
8.0 Hz, 1H), 6.45 (s, 1H), 4.79 (d, J = 5.6 Hz, 2H), 3.79 (s, 3H), 1.69 (s, 1H).
13
C NMR (100
MHz, CDCl3) δ 138.6, 138.0, 127.1, 121.9, 120.8, 119.5, 109.2, 101.3, 57.4, 29.8. IR (cm-1) 3354
(s), 3053 (m), 2934 (s), 1613 (w), 1548 (m). HRMS (ESI) Calcd. for C10H12NO ([M+H]+):
162.0913. Found: 162.0912.
To a solution of the alcohol (1.6 g, 9.78 mmol, 1.0 equiv) in MeCN (40 mL) was added MnO2
(6.3 g, 78.24 mmol, 8 equiv). The reaction mixture was stirred at room temperature overnight,
S5
and then filtered to remove the solid. The mixture was concentrated to give the product. Flash
chromatography over silica gel with hexanes-EtOAc (6:1) afforded S5 (1.2 g, 7.53 mmol, 77%)
as a white solid. TLC (Rf = 0.64, 3:1 hexanes:EtOAc). Mp 82-84oC.
1
H NMR (400 MHz,
CDCl3) δ 9.89 (s, 1 H), 7.74 (d, J = 8.0 Hz, 1 H), 7.39-7.46 (m, 2 H), 7.26 (s, 1 H), 7.18 (ddd, J =
8.0 Hz, 6.0 Hz, 1.6 Hz, 1 H), 4.11 (s, 3 H). 13C NMR (100 MHz, CDCl3) δ 183.0, 182.9, 140.8,
135.6, 126.9, 126.3, 123.3, 120.9, 117.5, 110.4, 31.5. IR (cm-1) 2837 (w), 1671 (s), 1613 (m),
1521 (m). HRMS (ESI) Calcd. for C10H10NO ([M+H]+): 160.0757. Found: 160.0756.
(E)-1-Methyl-2-(2-nitrovinyl)-1H-indole, S6
To a solution of S5 (500 mg, 3.14 mmol, 1.0 equiv) in nitromethane (15 mL) was added
NH4OAc (60 mg, 0.77 mmol, 0.25 equiv). The reaction mixture was stirred at reflux for 3 hours.
The mixture was poured into a separatory funnel containing EtOAc (10 mL) and the layers were
separated. The aqueous layer was extracted by EtOAc (2 x 5 mL), and the combined organic
layers were dried over Na2SO4, filtered, and concentrated. Flash chromatography over silica gel
with hexanes-EtOAc (6:1) afforded S6 (494 mg, 2.45 mmol, 78%) as a yellow solid. TLC (Rf =
0.31, 3:1 hexanes:EtOAc). Mp 134-136 oC. 1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 13.2 Hz,
1 H), 7.68 (d, J = 13.2 Hz, 1 H), 7.64 (d, J = 8.0 Hz, 1 H), 7.35 (d, J = 3.6 Hz, 2 H), 7.14-7.18
(m, 1 H), 7.10 (s, 1 H), 3.87 (s, 3 H). 13C NMR (100 MHz, CDCl3) δ 140.2, 135.7, 129.9, 127.8,
127.3, 125.4, 122.1, 121.2, 110.0, 107.6, 30.3. IR (cm-1) 3111 (w), 2941 (w), 2049 (w), 1938
(w), 1621 (s). HRMS (ESI) Calcd. for C11H11N2O2 ([M+H]+): 203.0815. Found: 203.0815.
Methyl-2-(2-nitroethyl)-1H-indole, S7
S6
To a solution of S6 (494 mg, 2.45 mmol, 1.0 equiv) in CHCl3 (20 mL) and i-PrOH (3
mL) was added NaBH4 (367 mg, 9.7 mmol, 4 equiv) and silica gel (3.65 g). The reaction mixture
was stirred at room for 15 minutes. The reaction was quenched by HOAc, and then the mixture
was filtered to yield a solution. It was poured into a separatory funnel containing EtOAc (10
mL) and the layers were separated. The aqueous layer was extracted by EtOAc (2 x 5 mL), and
the combined organic layers were dried over Na2SO4, filtered, and concentrated. Flash
chromatography over silica gel with hexanes-EtOAc (6:1) afforded S7 (320 mg, 1.59 mmol,
65%) as a yellow solid. TLC (Rf = 0.28, 2:1 hexanes:EtOAc). Mp 64-66 oC.
1
H NMR (400
MHz, CDCl3) δ 7.60 (d, J = 7.6 Hz, 1 H), 7.24-7.33 (m, 2 H), 7.16 (dt, J = 7.2 Hz, 0.8 Hz, 1 H),
6.30 (d, J = 0.8 Hz, 1 H), 4.68 (t, J = 7.2 Hz, 2 H), 3.66 (s, 2 H), 3.43 (dt, J = 7.2 Hz, 0.8 Hz, 2
H). 13C NMR (100 MHz, CDCl3) δ δ 137.3, 134.1, 127.3, 121.4, 120.1, 119.6, 109.0, 99.5, 73.4,
29.3, 24.3. IR (cm-1) 3030 (w), 1552 (s), 1471 (m). HRMS (ESI) Calcd. for C11H13N2O2
([M+H]+): 205.0972. Found: 205.0970
Methyl 3-(1-methyl-1H-indol-2-yl)-2-(phenylsulfonyl)acrylate, S8
To a solution of S5 (500 mg, 3.14 mmol, 1.0 equiv) in DMSO (20 mL) was added proline
(75 mg, 0.62 mmol, 0.2 equiv) and methyl phenylsulfonyl acetate (1 g, 4.71 mmol, 1.5 equiv).
The reaction mixture was stirred at room temperature overnight. The mixture was poured into a
separatory funnel containing EtOAc (20 mL) and the layers were separated. The aqueous layer
S7
was extracted by EtOAc (2 x 15 mL), and the combined organic layers were washed by brine,
dried over Na2SO4, filtered, and concentrated. Flash chromatography over silica gel with
hexanes-EtOAc (1:1) afforded S8 (1.06 g, 2.98 mmol, 95%) as a yellow solid. Mp 102-104 oC (I
took the melting point). TLC (Rf = 0.30, 2:1 hexanes:EtOAc). 1H NMR (400 MHz, CDCl3) δ
8.17 (s, 1 H), 7.97 (d, J = 7.2 Hz, 2H), 7.54-7.66 (m, 4 H), 7.34 (d, J = 4.0 Hz, 1H), 7.19 (s, 1H),
7.10-7.15 (m, 1 H), 3.88 (s, 3H), 3.81 (s, 3H) .
13
C NMR (100 MHz, CDCl3) δ 163.3, 140.1,
139.3, 133.5, 132.4, 130.8, 130.1, 129.0, 128.3, 127.9, 127.3, 125.5, 122.3, 120.9, 110.0, 109.7,
52.8, 30.0. IR (cm-1) 3061 (w), 2953 (w), 1725 (s), 1602 (s), 1517 (s). HRMS (ESI) Calcd. for
C19H18NO4S ([M+H]+): 356.0951. Found: 356.0954.
Methyl 3-(1-methyl-1H-indol-2-yl)-2-(phenylsulfonyl)propanoate, S9
To a solution of S8 (250 mg, 0.7 mmol, 1.0 equiv) in EtOH (10 mL) and THF (5 mL)
was added Pd/C (75 mg, 0.07 mmol, 0.1 equiv). The reaction mixture was stirred at room
temperature under hydrogen balloon for 5 hours. The mixture was filtered to give the solution
and then concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded
S9 (1.06 g, 2.98 mmol, 88%) as a very light yellow solid. TLC (Rf = 0.28, 2:1 hexanes:EtOAc).
Mp 114-116 ºC. 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.4 Hz, 2H), 7.74 (t, J = 7.2 Hz, 1H),
7.62 (t, J = 8.4 Hz, 2H), 7.50 (d, J = 8.0 Hz, 1 H), 7.27 (d, J = 8.8 Hz, 1H), 7.20 (dt, J = 6.8, 1.2
Hz, 1H), 7.08 (dt, J = 8.0 Hz, 0.8 Hz, 1H), 6.19 (s, 1H), 4.36 (dd, J = 9.2 Hz, 6.0 Hz, 1H), 3.67
(s, 3H), 3.57 (s, 3H), 3.51-3.56 (m, 2 H) .
13
C NMR (100 MHz, CDCl3) δ 165.5, 137.5, 136.7,
134.6, 134.0, 129.3, 129.2, 127.4, 121.5, 120.1, 119.6, 109.0, 100.2, 69.7, 53.2, 29.5, 23.9. IR
S8
(cm-1) 3053 (w), 2953 (w), 1741 (s), 1471 (m). HRMS (ESI) Calcd. for C19H18NO4S ([M-H]-):
356.0962. Found: 356.0962.
2. NMR Study of Uncatalyzed Reaction of
()-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(-2,3,4)--2-trifluoroacetoxy-5,6-dihydro-2Hpyran-2-yl]molybdenum, ()-20a & 20b
3b (50 mg, 0.08 mmol, 1.0 equiv) was dissolved in 1.2 mL d6-DMSO for 10 minutes to give a
mixture of two compounds 20a and 20b.
20a: 1H NMR (400 MHz, d6-DMSO)  8.55 (d, J = 2.0 Hz, 1 H), 8.13 (d, J = 2.0 Hz, 1 H),
8.03 (d, J = 2.0 Hz, 1 H), 7.81-7.87 (m, 3 H), 6.44-6.46 (m, 1 H), 6.24-6.32 (m, 2 H), 4.98 (br s,
1 H), 4.46 (d, J = 6.4 Hz, 1 H), 4.24 (d, J = 7.2 Hz, 1 H), 4.20 (d, J = 12.4 Hz, 1 H), 3.75 (t, J =
7.2 Hz, 1 H), 3.47 (d, J = 12.0 Hz, 1 H). 13C NMR (100 MHz, d6-DMSO) δ 227.0, 225.6, 158.4
(J = 38 Hz), 146.9, 142.6, 136.6, 135.3, 115.1 (J = 288 Hz), 106.7, 105.9, 89.6, 68.7, 68.2, 64.9,
57.0, 55.9.
20b: 1H NMR (400 MHz, d6-DMSO)  8.58 (d, J = 2.4 Hz, 1 H), 8.09 (d, J = 2.0 Hz, 1 H),
8.01 (d, J = 2.0 Hz, 1 H), 7.81-7.87 (m, 3 H), 6.44-6.46 (m, 1 H), 6.24-6.32 (m, 2 H), 4.93 (d, J =
2.0 Hz, 1 H), 4.56 (d, J = 7.8 Hz, 1 H), 4.39 (d, J = 12.4 Hz, 1 H), 4.17 (d, J = 8.0 Hz, 1 H), 3.89
(t, J = 7.6 Hz, 1 H), 3.57 (d, J = 10.0 Hz, 1 H). 13C NMR (100 MHz, d6-DMSO) δ 227.2, 225.3,
146.9, 142.6, 136.5, 135.2, 106.6, 105.8, 92.8, 89.6, 68.7, 68.4, 64.9, 57.0, 56.1.
S9
Figure S-1. 1H NMR Spectra of the Transformation of 3b to 20a and 20b in DMSO
The formation of 20a and 20b was monitored by 1HNMR. When 3b was dissolved in d6-DMSO,
the featured peaks at 7.51 ppm and 5.86 started diminishing. At the same time, the intensity of
the peak at 4.98 was increasing. These changes in the above 1H NMR spectra indicated the rapid
rearrangement of 3a to form 20a and 20b.
S10
Figure S-2. 1H NMR Spectra of the Decomposition of 3b in CD3CN
When 3b was dissolved in CD3CN, the featured peaks at 7.24 ppm and 5.86 started diminishing.
However, no proton signals for the rearrangement product 20a and 20b were observed. After 12
hours, 3b completely decomposed.
3. X-Ray Diffraction Study of ()-26
A suitable crystal of 26 was obtained by diffusion recrystallization from Et2O and hexanes.
The crystal was mounted onto a nylon fibre with paratone oil and placed under a cold stream at
173(2) K. Single crystal X-ray data were collected on a Bruker APEX2 diffractometer with 1.5
S11
kW graphite monochromated Curadiation. The detector to crystal distance was 5.1 cm. The data
collection was performed using multiple ω and an φ scans yielding data in the  range 3.12 to
66.57° with an average completeness of 91%. The frames were integrated with the SAINT
v7.68a.2 A multi-scan absorption correction was carried out using the program SADABS V20081.3 The structure was solved and refined with SHELXS and SHELXL.4 Molecular graphics were
obtained using SHELXTL.5 All non-hydrogen atoms were refined anisotropically.
ORTEP Diagram of 26
Table S-1 Crystal Data and Structure Refinement for 26.
Identification code
wyc_06_044
Empirical formula
C24H23NO5S
Formula weight
2
3
4
5
437.49
Bruker (2009). SAINT V7.68a, BRUKER AXS Inc., Madison, WI, USA.
Bruker (2008), SADABS V2008-1, BRUKER AXS Inc., Madison, WI, USA.
Sheldrick, G.M. Acta. Cryst. 2008, A64, 112-122.
Bruker (2000).SHELXTL V5.10, BRUKER AXS Inc., Madison, WI, USA.
S12
Temperature
173(2) K
Wavelength
Crystal system
Space group
Unit cell dimensions
1.54178 Å
Triclinic
P-1
a = 8.0781(2) Å
b = 9.0667(2) Å
c = 14.8527(4) Å
1028.21(4) Å3
2
1.413 Mg/m3
1.719 mm-1
Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta = 66.57°
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
= 72.6870(10)°.
= 84.4040(10)°.
 = 82.763(2)°.
460
0.29 x 0.26 x 0.11 mm3
3.12 to 66.57°.
-8<=h<=9, -10<=k<=10, -16<=l<=17
9521
3306 [R(int) = 0.0174]
90.9 %
Semi-empirical from equivalents
0.8335 and 0.6356
Full-matrix least-squares on F2
3306 / 0 / 280
1.027
R1 = 0.0369, wR2 = 0.1005
R1 = 0.0406, wR2 = 0.1052
0.406 and -0.315 e.Å-3
Table S-2 Atomic Coordinates ( x 104) and Equivalent Isotropic Displacement
Parameters (Å2x 103) for 26. U(eq) is defined as one third of the trace of the
orthogonalized Uij tensor.
______________________________________________________________________________
x
y
z
U(eq)
______________________________________________________________________________
C(1)
1095(3)
-91(2)
1229(1)
36(1)
C(2)
405(2)
1524(2)
731(1)
32(1)
C(3)
320(2)
2688(2)
1099(1)
28(1)
S13
C(4)
779(2)
2445(2)
2098(1)
25(1)
C(5)
C(6)
C(7)
C(8)
C(9)
C(10)
C(11)
C(12)
C(13)
2427(2)
2475(2)
2196(2)
2329(2)
2642(2)
2234(3)
1516(3)
1183(2)
1594(2)
3085(2)
2981(2)
1368(2)
-831(2)
-1986(2)
-3452(2)
-3775(2)
-2624(2)
-1122(2)
2240(1)
3296(1)
3871(1)
5060(1)
5910(1)
5982(1)
5251(1)
4415(1)
4313(1)
24(1)
27(1)
26(1)
28(1)
35(1)
40(1)
38(1)
32(1)
27(1)
C(14)
C(15)
C(16)
C(17)
C(18)
C(19)
C(20)
C(21)
C(22)
C(23)
1511(2)
825(2)
3306(2)
4027(2)
5509(3)
4159(2)
4046(2)
5463(3)
6946(3)
7044(3)
312(2)
700(2)
1471(2)
2218(2)
1399(2)
5820(2)
6666(2)
7300(2)
7058(2)
6203(2)
3566(1)
2624(1)
5386(1)
1920(1)
695(1)
1814(1)
2454(1)
2575(2)
2071(2)
1436(1)
26(1)
27(1)
33(1)
26(1)
38(1)
25(1)
32(1)
40(1)
39(1)
37(1)
C(24)
5647(2)
5579(2)
1291(1)
31(1)
N(1)
2691(2)
692(2)
4780(1)
28(1)
O(1)
1840(2)
-186(1)
2078(1)
31(1)
O(2)
5112(2)
1566(2)
2443(1)
36(1)
O(3)
4080(2)
2278(2)
1015(1)
30(1)
O(4)
903(2)
5901(2)
2000(1)
36(1)
O(5)
2379(2)
5352(2)
579(1)
35(1)
S(1)
2322(1)
5161(1)
1577(1)
26(1)
_____________________________________________________________________________
S14
Table S-3 Bond Lengths [Å] and Angles [°] for 26.
______________________________________________________________________________
C(1)-O(1)
1.425(2)
C(14)-C(15)
1.482(2)
C(1)-C(2)
1.494(3)
C(15)-O(1)
1.438(2)
C(1)-H(1A)
0.9900
C(15)-H(15A)
1.0000
C(1)-H(1B)
0.9900
C(16)-N(1)
1.453(2)
C(2)-C(3)
1.316(3)
C(16)-H(16A)
0.9800
C(2)-H(2A)
C(3)-C(4)
C(3)-H(3A)
C(4)-C(15)
C(4)-C(5)
C(4)-H(4A)
C(5)-C(17)
C(5)-C(6)
C(5)-S(1)
C(6)-C(7)
0.9500
1.511(2)
0.9500
1.540(2)
1.574(2)
1.0000
1.537(2)
1.547(2)
1.8414(16)
1.490(2)
C(16)-H(16B)
C(16)-H(16C)
C(17)-O(2)
C(17)-O(3)
C(18)-O(3)
C(18)-H(18A)
C(18)-H(18B)
C(18)-H(18C)
C(19)-C(20)
C(19)-C(24)
0.9800
0.9800
1.203(2)
1.326(2)
1.442(2)
0.9800
0.9800
0.9800
1.377(3)
1.396(3)
C(6)-H(6A)
C(6)-H(6B)
C(7)-C(14)
C(7)-N(1)
C(8)-N(1)
C(8)-C(9)
C(8)-C(13)
C(9)-C(10)
C(9)-H(9A)
C(10)-C(11)
0.9900
0.9900
1.367(2)
1.382(2)
1.379(2)
1.400(3)
1.413(3)
1.380(3)
0.9500
1.400(3)
C(19)-S(1)
C(20)-C(21)
C(20)-H(20A)
C(21)-C(22)
C(21)-H(21A)
C(22)-C(23)
C(22)-H(22A)
C(23)-C(24)
C(23)-H(23A)
C(24)-H(24A)
1.7704(17)
1.393(3)
0.9500
1.378(3)
0.9500
1.380(3)
0.9500
1.385(3)
0.9500
0.9500
C(10)-H(10A)
C(11)-C(12)
C(11)-H(11A)
C(12)-C(13)
C(12)-H(12A)
C(13)-C(14)
0.9500
1.387(3)
0.9500
1.403(3)
0.9500
1.435(2)
O(4)-S(1)
O(5)-S(1)
1.4410(14)
1.4369(13)
O(1)-C(1)-C(2)
O(1)-C(1)-H(1A)
C(2)-C(1)-H(1A)
S15
112.69(15)
109.1
109.1
O(1)-C(1)-H(1B)
109.1
C(9)-C(10)-C(11)
121.93(18)
C(2)-C(1)-H(1B)
H(1A)-C(1)-H(1B)
C(3)-C(2)-C(1)
C(3)-C(2)-H(2A)
C(1)-C(2)-H(2A)
C(2)-C(3)-C(4)
C(2)-C(3)-H(3A)
C(4)-C(3)-H(3A)
C(3)-C(4)-C(15)
109.1
107.8
123.07(16)
118.5
118.5
121.69(17)
119.2
119.2
108.28(14)
C(9)-C(10)-H(10A)
C(11)-C(10)-H(10A)
C(12)-C(11)-C(10)
C(12)-C(11)-H(11A)
C(10)-C(11)-H(11A)
C(11)-C(12)-C(13)
C(11)-C(12)-H(12A)
C(13)-C(12)-H(12A)
C(12)-C(13)-C(8)
119.0
119.0
121.06(19)
119.5
119.5
118.59(19)
120.7
120.7
119.14(17)
C(3)-C(4)-C(5)
C(15)-C(4)-C(5)
C(3)-C(4)-H(4A)
C(15)-C(4)-H(4A)
C(5)-C(4)-H(4A)
C(17)-C(5)-C(6)
C(17)-C(5)-C(4)
C(6)-C(5)-C(4)
C(17)-C(5)-S(1)
C(6)-C(5)-S(1)
117.90(14)
110.01(13)
106.7
106.7
106.7
109.61(14)
113.42(14)
108.78(13)
109.87(11)
106.86(11)
C(12)-C(13)-C(14)
C(8)-C(13)-C(14)
C(7)-C(14)-C(13)
C(7)-C(14)-C(15)
C(13)-C(14)-C(15)
O(1)-C(15)-C(14)
O(1)-C(15)-C(4)
C(14)-C(15)-C(4)
O(1)-C(15)-H(15A)
C(14)-C(15)-H(15A)
134.66(17)
106.14(16)
107.29(16)
122.78(16)
129.93(16)
108.37(15)
109.93(13)
112.26(14)
108.7
108.7
C(4)-C(5)-S(1)
C(7)-C(6)-C(5)
C(7)-C(6)-H(6A)
C(5)-C(6)-H(6A)
C(7)-C(6)-H(6B)
C(5)-C(6)-H(6B)
H(6A)-C(6)-H(6B)
C(14)-C(7)-N(1)
C(14)-C(7)-C(6)
N(1)-C(7)-C(6)
108.08(11)
108.36(14)
110.0
110.0
110.0
110.0
108.4
109.90(16)
125.58(16)
124.41(16)
C(4)-C(15)-H(15A)
N(1)-C(16)-H(16A)
N(1)-C(16)-H(16B)
H(16A)-C(16)-H(16B)
N(1)-C(16)-H(16C)
H(16A)-C(16)-H(16C)
H(16B)-C(16)-H(16C)
O(2)-C(17)-O(3)
O(2)-C(17)-C(5)
O(3)-C(17)-C(5)
108.7
109.5
109.5
109.5
109.5
109.5
109.5
124.23(17)
122.92(16)
112.85(14)
N(1)-C(8)-C(9)
N(1)-C(8)-C(13)
C(9)-C(8)-C(13)
C(10)-C(9)-C(8)
C(10)-C(9)-H(9A)
C(8)-C(9)-H(9A)
129.13(18)
108.52(15)
122.32(18)
116.94(19)
121.5
121.5
O(3)-C(18)-H(18A)
O(3)-C(18)-H(18B)
H(18A)-C(18)-H(18B)
O(3)-C(18)-H(18C)
H(18A)-C(18)-H(18C)
H(18B)-C(18)-H(18C)
109.5
109.5
109.5
109.5
109.5
109.5
S16
C(20)-C(19)-C(24)
121.93(16)
C(23)-C(24)-C(19)
118.27(18)
C(20)-C(19)-S(1)
C(24)-C(19)-S(1)
C(19)-C(20)-C(21)
C(19)-C(20)-H(20A)
C(21)-C(20)-H(20A)
C(22)-C(21)-C(20)
C(22)-C(21)-H(21A)
C(20)-C(21)-H(21A)
C(21)-C(22)-C(23)
118.89(14)
118.96(14)
118.65(18)
120.7
120.7
120.1(2)
120.0
120.0
120.70(18)
C(23)-C(24)-H(24A)
C(19)-C(24)-H(24A)
C(8)-N(1)-C(7)
C(8)-N(1)-C(16)
C(7)-N(1)-C(16)
C(1)-O(1)-C(15)
C(17)-O(3)-C(18)
O(5)-S(1)-O(4)
O(5)-S(1)-C(19)
120.9
120.9
108.13(15)
124.87(15)
126.64(16)
111.66(14)
114.94(14)
118.34(8)
107.71(8)
C(21)-C(22)-H(22A)
119.6
O(4)-S(1)-C(19)
108.40(8)
C(23)-C(22)-H(22A)
119.6
O(5)-S(1)-C(5)
110.30(8)
C(22)-C(23)-C(24)
120.36(19)
O(4)-S(1)-C(5)
105.82(8)
C(22)-C(23)-H(23A)
119.8
C(19)-S(1)-C(5)
105.56(8)
C(24)-C(23)-H(23A)
119.8
______________________________________________________________________________
Symmetry transformations used to generate equivalent atoms:
Table S-4. Anisotropic Displacement Parameters (Å2x 103) for 26. The anisotropic
displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h k a* b* U12 ]
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
C(1)
50(1)
35(1)
28(1)
-12(1)
-8(1)
-8(1)
C(2)
33(1)
39(1)
25(1)
-6(1)
-8(1)
-11(1)
C(3)
26(1)
32(1)
24(1)
-2(1)
-8(1)
-6(1)
C(4)
24(1)
26(1)
24(1)
-6(1)
-5(1)
-4(1)
C(5)
27(1)
22(1)
23(1)
-4(1)
-6(1)
-4(1)
C(6)
29(1)
29(1)
24(1)
-8(1)
-6(1)
-5(1)
C(7)
24(1)
32(1)
23(1)
-5(1)
-4(1)
-2(1)
C(8)
C(9)
C(10)
C(11)
C(12)
C(13)
24(1)
31(1)
39(1)
39(1)
30(1)
24(1)
34(1)
44(1)
38(1)
30(1)
33(1)
31(1)
24(1)
24(1)
31(1)
40(1)
31(1)
24(1)
-4(1)
-3(1)
6(1)
-1(1)
-6(1)
-4(1)
S17
-2(1)
-4(1)
-1(1)
1(1)
0(1)
-1(1)
-1(1)
2(1)
2(1)
-3(1)
-4(1)
-2(1)
C(14)
25(1)
29(1)
24(1)
-5(1)
-4(1)
-3(1)
C(15)
C(16)
C(17)
C(18)
C(19)
C(20)
C(21)
C(22)
C(23)
28(1)
32(1)
27(1)
39(1)
24(1)
30(1)
45(1)
32(1)
27(1)
28(1)
44(1)
23(1)
37(1)
22(1)
31(1)
34(1)
32(1)
38(1)
25(1)
26(1)
26(1)
36(1)
26(1)
35(1)
47(1)
50(1)
39(1)
-6(1)
-12(1)
-4(1)
-11(1)
-1(1)
-10(1)
-15(1)
-1(1)
1(1)
-4(1)
-8(1)
-6(1)
3(1)
-6(1)
-4(1)
-15(1)
-14(1)
-3(1)
-6(1)
-4(1)
-6(1)
2(1)
-4(1)
-4(1)
-6(1)
-10(1)
-6(1)
C(24)
32(1)
31(1)
27(1)
-4(1)
-3(1)
-3(1)
N(1)
29(1)
35(1)
21(1)
-6(1)
-5(1)
-3(1)
O(1)
37(1)
29(1)
27(1)
-9(1)
-8(1)
-2(1)
O(2)
30(1)
43(1)
34(1)
-10(1)
-13(1)
4(1)
O(3)
29(1)
34(1)
25(1)
-7(1)
-3(1)
0(1)
O(4)
26(1)
29(1)
50(1)
-9(1)
-5(1)
-2(1)
O(5)
41(1)
32(1)
29(1)
0(1)
-15(1)
-7(1)
S(1)
24(1)
23(1)
28(1)
-3(1)
-8(1)
-3(1)
_____________________________________________________________________________
Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 10
3) for 26.
______________________________________________________________________________
x
y
z
U(eq)
______________________________________________________________________________
H(1A)
182
-776
1382
43
H(1B)
1942
-473
801
43
H(2A)
10
1721
120
38
H(3A)
-39
3706
726
34
H(4A)
H(6A)
H(6B)
H(9A)
H(10A)
H(11A)
-162
3573
1593
3114
2446
1253
2981
3237
3729
-1771
-4265
-4799
2410
3417
3469
6412
6546
5327
S18
29
32
32
42
48
46
H(12A)
687
-2848
3923
38
H(15A)
H(16A)
H(16B)
H(16C)
H(18A)
H(18B)
H(18C)
H(20A)
H(21A)
-340
3463
4375
2493
5446
5516
6537
3023
5407
393
2545
927
1465
1505
301
1792
6814
7900
2709
5025
5621
5922
23
1058
788
2804
3006
32
50
50
50
57
57
57
38
48
H(22A)
7910
7484
2163
47
H(23A)
8076
6041
1095
44
H(24A)
5701
5003
848
37
___________________________________________________________________
_____
Table 6 Torsion angles [°] for 26.
___________________________________________________________________________
O(1)-C(1)-C(2)-C(3)
-7.7(3)
C(1)-C(2)-C(3)-C(4)
-5.5(3)
C(2)-C(3)-C(4)-C(15)
-15.8(2)
C(2)-C(3)-C(4)-C(5)
C(3)-C(4)-C(5)-C(17)
C(15)-C(4)-C(5)-C(17)
C(3)-C(4)-C(5)-C(6)
C(15)-C(4)-C(5)-C(6)
C(3)-C(4)-C(5)-S(1)
C(15)-C(4)-C(5)-S(1)
C(17)-C(5)-C(6)-C(7)
C(4)-C(5)-C(6)-C(7)
S(1)-C(5)-C(6)-C(7)
109.8(2)
-68.04(19)
56.74(18)
169.71(15)
-65.51(18)
54.04(18)
178.82(11)
-72.83(17)
51.69(18)
168.15(12)
C(5)-C(6)-C(7)-C(14)
C(5)-C(6)-C(7)-N(1)
N(1)-C(8)-C(9)-C(10)
C(13)-C(8)-C(9)-C(10)
C(8)-C(9)-C(10)-C(11)
C(9)-C(10)-C(11)-C(12)
-18.6(2)
157.34(17)
-176.20(18)
1.5(3)
-0.9(3)
0.0(3)
S19
C(10)-C(11)-C(12)-C(13)
0.5(3)
C(11)-C(12)-C(13)-C(8)
C(11)-C(12)-C(13)-C(14)
N(1)-C(8)-C(13)-C(12)
C(9)-C(8)-C(13)-C(12)
N(1)-C(8)-C(13)-C(14)
C(9)-C(8)-C(13)-C(14)
N(1)-C(7)-C(14)-C(13)
C(6)-C(7)-C(14)-C(13)
N(1)-C(7)-C(14)-C(15)
0.0(3)
176.9(2)
177.08(16)
-1.0(3)
-0.6(2)
-178.71(17)
-0.9(2)
175.54(17)
178.56(16)
C(6)-C(7)-C(14)-C(15)
C(12)-C(13)-C(14)-C(7)
C(8)-C(13)-C(14)-C(7)
C(12)-C(13)-C(14)-C(15)
C(8)-C(13)-C(14)-C(15)
C(7)-C(14)-C(15)-O(1)
C(13)-C(14)-C(15)-O(1)
C(7)-C(14)-C(15)-C(4)
C(13)-C(14)-C(15)-C(4)
C(3)-C(4)-C(15)-O(1)
-5.0(3)
-176.3(2)
0.9(2)
4.3(3)
-178.48(18)
114.48(18)
-66.2(2)
-7.1(2)
172.21(17)
50.69(18)
C(5)-C(4)-C(15)-O(1)
C(3)-C(4)-C(15)-C(14)
C(5)-C(4)-C(15)-C(14)
C(6)-C(5)-C(17)-O(2)
C(4)-C(5)-C(17)-O(2)
S(1)-C(5)-C(17)-O(2)
C(6)-C(5)-C(17)-O(3)
C(4)-C(5)-C(17)-O(3)
S(1)-C(5)-C(17)-O(3)
C(24)-C(19)-C(20)-C(21)
-79.45(17)
171.39(15)
41.25(19)
0.5(2)
-121.33(18)
117.60(16)
-179.17(13)
59.04(18)
-62.03(16)
0.2(3)
S(1)-C(19)-C(20)-C(21)
C(19)-C(20)-C(21)-C(22)
C(20)-C(21)-C(22)-C(23)
C(21)-C(22)-C(23)-C(24)
C(22)-C(23)-C(24)-C(19)
C(20)-C(19)-C(24)-C(23)
-174.33(14)
-0.9(3)
0.7(3)
0.3(3)
-1.0(3)
0.7(3)
S20
S(1)-C(19)-C(24)-C(23)
175.27(14)
C(9)-C(8)-N(1)-C(7)
C(13)-C(8)-N(1)-C(7)
C(9)-C(8)-N(1)-C(16)
C(13)-C(8)-N(1)-C(16)
C(14)-C(7)-N(1)-C(8)
C(6)-C(7)-N(1)-C(8)
C(14)-C(7)-N(1)-C(16)
C(6)-C(7)-N(1)-C(16)
C(2)-C(1)-O(1)-C(15)
178.01(18)
0.1(2)
-8.5(3)
173.63(17)
0.5(2)
-175.97(16)
-172.88(17)
10.6(3)
44.1(2)
C(14)-C(15)-O(1)-C(1)
C(4)-C(15)-O(1)-C(1)
O(2)-C(17)-O(3)-C(18)
C(5)-C(17)-O(3)-C(18)
C(20)-C(19)-S(1)-O(5)
C(24)-C(19)-S(1)-O(5)
C(20)-C(19)-S(1)-O(4)
C(24)-C(19)-S(1)-O(4)
C(20)-C(19)-S(1)-C(5)
C(24)-C(19)-S(1)-C(5)
169.55(14)
-67.43(18)
4.1(2)
-176.28(14)
139.60(14)
-35.12(16)
10.45(16)
-164.27(14)
-102.56(15)
82.72(15)
C(17)-C(5)-S(1)-O(5)
57.58(14)
C(6)-C(5)-S(1)-O(5)
176.42(11)
C(4)-C(5)-S(1)-O(5)
-66.65(13)
C(17)-C(5)-S(1)-O(4)
-173.30(11)
C(6)-C(5)-S(1)-O(4)
-54.46(13)
C(4)-C(5)-S(1)-O(4)
62.46(13)
C(17)-C(5)-S(1)-C(19)
-58.50(13)
C(6)-C(5)-S(1)-C(19)
60.34(13)
C(4)-C(5)-S(1)-C(19)
177.26(11)
________________________________________________________________
Symmetry transformations used to generate equivalent atoms:
S21
4. X-Ray Diffraction Study of (±)-34
A suitable crystal of 34 was obtained by diffusion recrystallization from EtOAc and methanol.
The crystals grew as yellow plates. The crystal was mounted onto a nylon fibre with paratone oil
and placed under a cold stream at 173(2)K. Single crystal X-ray data were collected on a Bruker
APEX2 diffractometer with 1.6 kW graphite monochromated Mo radiations. The detector to
crystal distance was 5.1 cm. The data collection was performed using ω scans with different φ
values yielding data in the  range 1.84 to 31.06° with an average completeness of 97.8%. The
frames were integrated with the SAINT v7.68a.2 A combination of a numerical and amulti-scan
absorption correction was carried out using the program SADABS V2008-1.3 The structure was
solved and refined with Olex26, a graphical interface to SHELX.4 In the final cycles of
refinement all non-hydrogen atoms were refined anisotropically.
ORTEP Diagram of 34
6
O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann. OLEX2: a
complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339-341.
Supramol. Chem. 2001, 1, 189-191.
S22
Table S-5. Crystal Data and Structure Refinement for 34.
Identification code
ks136f1
Empirical formula
C36H38BMoN9O7
Formula weight
815.50
Temperature
173.15 K
Wavelength
0.71073 Å
Crystal system
Triclinic
Space group
P -1
Unit cell dimensions
a = 7.7695(12) Å
b = 10.6902(16) Å
Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta = 31.06°
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
c = 22.339(3) Å
1820.8(5) Å3
2
1.487 Mg/m3
0.423 mm-1
α= 89.222(2)°.
β= 81.538(2)°.
γ = 82.824(2)°.
840
0.384 x 0.222 x 0.096 mm3
1.84 to 31.06°.
-11<=h<=11, -15<=k<=15, -32<=l<=32
38333
11428 [R(int) = 0.0330]
97.8 %
Semi-empirical from equivalents
0.7356 and 0.6650
Full-matrix least-squares on F2
11428 / 0 / 488
1.129
R1 = 0.0443, wR2 = 0.1029
R1 = 0.0505, wR2 = 0.1055
2.008 and -0.834 e.Å-3
Table S-6. Atomic Coordinates ( x 104) and Equivalent Isotropic Displacement
Parameters (Å2x 103) for 34. U(eq) is defined as one third of the trace of the
orthogonalized Uij tensor.
______________________________________________________________________________
__
S23
x
y
z
U(eq)
______________________________________________________________________________
__
Mo(1)
1839(1)
9615(1)
7900(1)
17(1)
O(1)
3322(3)
8944(2)
9100(1)
38(1)
O(2)
1046(3)
6837(2)
8009(1)
42(1)
O(3)
6678(3)
6718(2)
8672(1)
34(1)
O(4)
5578(2)
5318(2)
8131(1)
30(1)
O(5)
6555(3)
4648(2)
6877(1)
39(1)
O(6)
9200(3)
7593(2)
5592(1)
49(1)
N(1)
N(2)
N(3)
N(4)
N(5)
N(6)
N(7)
N(9)
N(8)
C(1)
65(2)
-1134(2)
-1797(2)
-684(2)
331(3)
1834(2)
5518(2)
7137(3)
8409(3)
-2059(3)
10086(2)
11146(2)
11208(2)
10165(2)
12543(2)
11778(2)
7396(2)
4626(2)
5600(2)
11232(2)
7176(1)
7241(1)
8376(1)
8485(1)
7845(1)
7907(1)
7852(1)
4958(1)
5698(1)
6773(1)
21(1)
21(1)
22(1)
21(1)
23(1)
22(1)
21(1)
32(1)
29(1)
28(1)
C(2)
C(3)
C(4)
C(5)
C(6)
C(7)
C(8)
C(9)
C(10)
C(11)
-1471(3)
-152(3)
-1353(3)
-2879(3)
-3110(3)
2995(3)
2263(4)
572(3)
2803(3)
1362(3)
10218(3)
9525(2)
9713(2)
10464(3)
11402(2)
12570(2)
13823(2)
13766(2)
9215(2)
7862(2)
6394(1)
6663(1)
9023(1)
9264(1)
8842(1)
7995(1)
7991(1)
7896(1)
8653(1)
7967(1)
31(1)
26(1)
26(1)
32(1)
28(1)
28(1)
33(1)
30(1)
23(1)
25(1)
C(12)
C(13)
C(14)
C(15)
C(16)
C(17)
4143(3)
3606(3)
4813(3)
5890(3)
7074(4)
7983(4)
9566(2)
8366(2)
7202(2)
6399(2)
5735(3)
6344(2)
7197(1)
7136(1)
7293(1)
8210(1)
9103(1)
9551(1)
24(1)
22(1)
21(1)
24(1)
39(1)
32(1)
S24
C(18)
6978(4)
7111(3)
10003(1)
44(1)
C(19)
C(20)
C(21)
C(22)
C(23)
C(24)
C(25)
C(26)
C(27)
7767(5)
9542(5)
10569(5)
9781(4)
6112(3)
4874(3)
6296(3)
7506(3)
8987(3)
7729(4)
7579(4)
6838(4)
6209(3)
8618(2)
9690(2)
6931(2)
5717(2)
5471(3)
10408(1)
10369(2)
9924(2)
9505(2)
7940(1)
7736(1)
6755(1)
6824(1)
6297(1)
54(1)
55(1)
57(1)
44(1)
23(1)
25(1)
26(1)
30(1)
36(1)
C(28)
C(29)
C(30)
C(31)
C(32)
C(33)
C(34)
C(35)
B(1)
O(7)
8595(3)
8022(3)
7272(3)
7709(3)
6655(4)
6881(4)
7705(4)
8250(4)
-1377(3)
3637(4)
6721(2)
6734(2)
5705(2)
4631(2)
5744(3)
6789(4)
7775(3)
7767(3)
12002(2)
7495(2)
5381(1)
4786(1)
4604(1)
5471(1)
4040(1)
3669(1)
3847(2)
4401(2)
7802(1)
5666(1)
33(1)
31(1)
30(1)
30(1)
41(1)
51(1)
53(1)
45(1)
23(1)
68(1)
C(36)
3532(6)
8587(4)
5316(2)
71(1)
Table S-7. Bond Lengths [Å] and Angles [°] for 34.
_____________________________________________________
Mo(1)-N(1)
2.2867(17)
Mo(1)-N(4)
2.2081(17)
Mo(1)-N(6)
2.3122(18)
Mo(1)-C(10)
1.961(2)
Mo(1)-C(11)
Mo(1)-C(12)
Mo(1)-C(13)
Mo(1)-C(24)
O(1)-C(10)
O(2)-C(11)
1.955(2)
2.196(2)
2.344(2)
2.344(2)
1.153(3)
1.153(3)
S25
O(3)-C(15)
1.343(3)
O(3)-C(16)
O(4)-C(15)
O(5)-C(26)
O(6)-C(28)
O(5)-H(5)
O(7)-C(36)
O(7)-H(7A)
N(1)-C(3)
N(1)-N(2)
1.451(3)
1.230(3)
1.431(3)
1.224(3)
0.8200
1.396(5)
0.8200
1.342(3)
1.369(2)
N(2)-B(1)
N(2)-C(1)
N(3)-C(6)
N(3)-B(1)
N(3)-N(4)
N(4)-C(4)
N(5)-B(1)
N(5)-N(6)
N(5)-C(9)
N(6)-C(7)
1.536(3)
1.350(3)
1.346(3)
1.545(3)
1.365(2)
1.347(3)
1.528(3)
1.363(3)
1.352(3)
1.348(3)
N(7)-C(23)
N(7)-C(15)
N(7)-C(14)
N(8)-C(31)
N(8)-C(27)
N(8)-C(28)
N(9)-C(31)
N(9)-C(30)
C(1)-C(2)
C(2)-C(3)
1.464(3)
1.351(3)
1.462(3)
1.365(3)
1.472(3)
1.396(3)
1.290(3)
1.396(3)
1.374(4)
1.392(3)
C(4)-C(5)
C(5)-C(6)
C(7)-C(8)
C(8)-C(9)
C(12)-C(24)
C(12)-C(13)
1.388(4)
1.380(4)
1.389(3)
1.370(4)
1.419(3)
1.412(3)
S26
C(13)-C(14)
1.532(3)
C(14)-C(25)
C(16)-C(17)
C(17)-C(18)
C(17)-C(22)
C(18)-C(19)
C(19)-C(20)
C(20)-C(21)
C(21)-C(22)
C(23)-C(24)
1.541(3)
1.505(4)
1.390(4)
1.375(4)
1.382(5)
1.358(6)
1.372(6)
1.411(5)
1.512(3)
C(25)-C(26)
C(26)-C(27)
C(28)-C(29)
C(29)-C(35)
C(29)-C(30)
C(30)-C(32)
C(32)-C(33)
C(33)-C(34)
C(34)-C(35)
C(1)-H(1)
1.525(3)
1.521(4)
1.463(4)
1.403(4)
1.399(3)
1.410(4)
1.395(5)
1.391(5)
1.364(5)
0.9300
C(2)-H(2)
C(3)-H(3)
C(4)-H(4)
C(5)-H(5A)
C(6)-H(6)
C(7)-H(7)
C(8)-H(8)
C(9)-H(9)
C(12)-H(12)
C(13)-H(13)
0.9300
0.9300
0.9300
0.9300
0.9300
0.9300
0.9300
0.9300
0.9800
0.9800
C(14)-H(14)
C(16)-H(16B)
C(16)-H(16A)
C(18)-H(18)
C(19)-H(19)
C(20)-H(20)
0.9800
0.9700
0.9700
0.9300
0.9300
0.9300
S27
C(21)-H(21)
0.9300
C(22)-H(22)
C(23)-H(23A)
C(23)-H(23B)
C(24)-H(24)
C(25)-H(25A)
C(25)-H(25B)
C(26)-H(26)
C(27)-H(27A)
C(27)-H(27B)
0.9300
0.9700
0.9700
0.9800
0.9700
0.9700
0.9800
0.9700
0.9700
C(31)-H(31)
C(32)-H(32)
C(33)-H(33)
C(34)-H(34)
C(35)-H(35)
C(36)-H(36A)
C(36)-H(36B)
C(36)-H(36C)
B(1)-H(1A)
0.9300
0.9300
0.9300
0.9300
0.9300
0.9600
0.9600
0.9600
1.1000
N(1)-Mo(1)-N(4)
N(1)-Mo(1)-N(6)
N(1)-Mo(1)-C(10)
N(1)-Mo(1)-C(11)
N(1)-Mo(1)-C(12)
N(1)-Mo(1)-C(13)
N(1)-Mo(1)-C(24)
N(4)-Mo(1)-N(6)
N(4)-Mo(1)-C(10)
N(4)-Mo(1)-C(11)
80.24(6)
82.49(6)
165.75(8)
93.58(8)
89.45(7)
84.13(7)
123.72(7)
80.33(6)
85.97(8)
88.58(8)
N(4)-Mo(1)-C(12)
N(4)-Mo(1)-C(13)
N(4)-Mo(1)-C(24)
N(6)-Mo(1)-C(10)
N(6)-Mo(1)-C(11)
N(6)-Mo(1)-C(12)
164.11(7)
151.78(7)
147.02(7)
98.79(8)
168.70(8)
86.40(7)
S28
N(6)-Mo(1)-C(13)
120.78(7)
N(6)-Mo(1)-C(24)
C(10)-Mo(1)-C(11)
C(10)-Mo(1)-C(12)
C(10)-Mo(1)-C(13)
C(10)-Mo(1)-C(24)
C(11)-Mo(1)-C(12)
C(11)-Mo(1)-C(13)
C(11)-Mo(1)-C(24)
C(12)-Mo(1)-C(13)
81.02(7)
82.44(9)
104.78(9)
106.93(8)
70.34(9)
104.22(9)
69.03(8)
109.81(9)
36.06(8)
C(12)-Mo(1)-C(24)
C(13)-Mo(1)-C(24)
C(15)-O(3)-C(16)
C(26)-O(5)-H(5)
C(36)-O(7)-H(7A)
Mo(1)-N(1)-N(2)
Mo(1)-N(1)-C(3)
N(2)-N(1)-C(3)
N(1)-N(2)-B(1)
C(1)-N(2)-B(1)
36.24(8)
60.40(8)
116.9(2)
109.00
109.00
119.29(13)
134.57(15)
106.12(17)
121.85(16)
128.42(18)
N(1)-N(2)-C(1)
N(4)-N(3)-B(1)
N(4)-N(3)-C(6)
C(6)-N(3)-B(1)
Mo(1)-N(4)-N(3)
N(3)-N(4)-C(4)
Mo(1)-N(4)-C(4)
C(9)-N(5)-B(1)
N(6)-N(5)-C(9)
N(6)-N(5)-B(1)
109.61(17)
120.17(16)
109.52(17)
130.20(18)
122.43(13)
106.35(17)
130.77(14)
128.0(2)
110.3(2)
121.32(17)
Mo(1)-N(6)-C(7)
Mo(1)-N(6)-N(5)
N(5)-N(6)-C(7)
C(14)-N(7)-C(23)
C(15)-N(7)-C(23)
C(14)-N(7)-C(15)
135.60(14)
119.42(13)
104.87(18)
117.66(17)
121.82(18)
119.43(18)
S29
C(27)-N(8)-C(31)
119.4(2)
C(27)-N(8)-C(28)
C(28)-N(8)-C(31)
C(30)-N(9)-C(31)
N(2)-C(1)-C(2)
C(1)-C(2)-C(3)
N(1)-C(3)-C(2)
N(4)-C(4)-C(5)
C(4)-C(5)-C(6)
N(3)-C(6)-C(5)
118.4(2)
122.1(2)
116.6(2)
108.6(2)
105.0(2)
110.6(2)
110.4(2)
104.9(2)
108.8(2)
N(6)-C(7)-C(8)
C(7)-C(8)-C(9)
N(5)-C(9)-C(8)
Mo(1)-C(10)-O(1)
Mo(1)-C(11)-O(2)
C(13)-C(12)-C(24)
Mo(1)-C(12)-C(24)
Mo(1)-C(12)-C(13)
Mo(1)-C(13)-C(14)
Mo(1)-C(13)-C(12)
111.8(2)
104.2(2)
108.8(2)
177.2(2)
178.7(2)
112.81(19)
77.57(14)
77.69(13)
120.76(13)
66.25(12)
C(12)-C(13)-C(14)
N(7)-C(14)-C(25)
N(7)-C(14)-C(13)
C(13)-C(14)-C(25)
O(3)-C(15)-N(7)
O(4)-C(15)-N(7)
O(3)-C(15)-O(4)
O(3)-C(16)-C(17)
C(16)-C(17)-C(22)
C(16)-C(17)-C(18)
118.4(2)
111.15(18)
111.34(17)
107.70(17)
111.78(18)
125.6(2)
122.7(2)
105.1(2)
121.6(2)
118.9(3)
C(18)-C(17)-C(22)
C(17)-C(18)-C(19)
C(18)-C(19)-C(20)
C(19)-C(20)-C(21)
C(20)-C(21)-C(22)
C(17)-C(22)-C(21)
119.4(3)
120.7(3)
119.9(3)
120.8(4)
119.9(4)
119.3(3)
S30
N(7)-C(23)-C(24)
111.44(19)
C(12)-C(24)-C(23)
Mo(1)-C(24)-C(12)
Mo(1)-C(24)-C(23)
C(14)-C(25)-C(26)
C(25)-C(26)-C(27)
O(5)-C(26)-C(25)
O(5)-C(26)-C(27)
N(8)-C(27)-C(26)
O(6)-C(28)-C(29)
119.88(19)
66.19(13)
120.42(15)
113.43(18)
113.1(2)
111.2(2)
107.7(2)
114.0(2)
124.4(2)
N(8)-C(28)-C(29)
O(6)-C(28)-N(8)
C(28)-C(29)-C(35)
C(30)-C(29)-C(35)
C(28)-C(29)-C(30)
C(29)-C(30)-C(32)
N(9)-C(30)-C(29)
N(9)-C(30)-C(32)
N(8)-C(31)-N(9)
C(30)-C(32)-C(33)
113.8(2)
121.8(2)
119.8(2)
120.7(2)
119.5(2)
119.3(2)
122.2(2)
118.6(2)
125.7(2)
118.8(3)
C(32)-C(33)-C(34)
C(33)-C(34)-C(35)
C(29)-C(35)-C(34)
N(2)-C(1)-H(1)
C(2)-C(1)-H(1)
C(3)-C(2)-H(2)
C(1)-C(2)-H(2)
N(1)-C(3)-H(3)
C(2)-C(3)-H(3)
N(4)-C(4)-H(4)
121.0(3)
120.7(3)
119.5(3)
126.00
126.00
127.00
128.00
125.00
125.00
125.00
C(5)-C(4)-H(4)
C(6)-C(5)-H(5A)
C(4)-C(5)-H(5A)
N(3)-C(6)-H(6)
C(5)-C(6)-H(6)
N(6)-C(7)-H(7)
125.00
128.00
128.00
126.00
126.00
124.00
S31
C(8)-C(7)-H(7)
124.00
C(9)-C(8)-H(8)
C(7)-C(8)-H(8)
C(8)-C(9)-H(9)
N(5)-C(9)-H(9)
C(13)-C(12)-H(12)
C(24)-C(12)-H(12)
Mo(1)-C(12)-H(12)
Mo(1)-C(13)-H(13)
C(12)-C(13)-H(13)
128.00
128.00
126.00
126.00
123.00
123.00
123.00
114.00
114.00
C(14)-C(13)-H(13)
C(13)-C(14)-H(14)
C(25)-C(14)-H(14)
N(7)-C(14)-H(14)
C(17)-C(16)-H(16A)
O(3)-C(16)-H(16B)
O(3)-C(16)-H(16A)
H(16A)-C(16)-H(16B)
C(17)-C(16)-H(16B)
C(19)-C(18)-H(18)
114.00
109.00
109.00
109.00
111.00
111.00
111.00
109.00
111.00
120.00
C(17)-C(18)-H(18)
C(20)-C(19)-H(19)
C(18)-C(19)-H(19)
C(21)-C(20)-H(20)
C(19)-C(20)-H(20)
C(22)-C(21)-H(21)
C(20)-C(21)-H(21)
C(21)-C(22)-H(22)
C(17)-C(22)-H(22)
N(7)-C(23)-H(23B)
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
109.00
N(7)-C(23)-H(23A)
C(24)-C(23)-H(23A)
H(23A)-C(23)-H(23B)
C(24)-C(23)-H(23B)
C(23)-C(24)-H(24)
C(12)-C(24)-H(24)
109.00
109.00
108.00
109.00
114.00
114.00
S32
Mo(1)-C(24)-H(24)
114.00
C(14)-C(25)-H(25A)
C(14)-C(25)-H(25B)
C(26)-C(25)-H(25A)
C(26)-C(25)-H(25B)
H(25A)-C(25)-H(25B)
C(25)-C(26)-H(26)
C(27)-C(26)-H(26)
O(5)-C(26)-H(26)
C(26)-C(27)-H(27B)
109.00
109.00
109.00
109.00
108.00
108.00
108.00
108.00
109.00
C(26)-C(27)-H(27A)
N(8)-C(27)-H(27B)
H(27A)-C(27)-H(27B)
N(8)-C(27)-H(27A)
N(8)-C(31)-H(31)
N(9)-C(31)-H(31)
C(33)-C(32)-H(32)
C(30)-C(32)-H(32)
C(32)-C(33)-H(33)
C(34)-C(33)-H(33)
109.00
109.00
108.00
109.00
117.00
117.00
121.00
121.00
120.00
119.00
C(33)-C(34)-H(34)
C(35)-C(34)-H(34)
C(34)-C(35)-H(35)
C(29)-C(35)-H(35)
H(36A)-C(36)-H(36C)
H(36A)-C(36)-H(36B)
O(7)-C(36)-H(36C)
O(7)-C(36)-H(36A)
H(36B)-C(36)-H(36C)
O(7)-C(36)-H(36B)
120.00
120.00
120.00
120.00
110.00
109.00
109.00
109.00
110.00
109.00
N(2)-B(1)-N(3)
N(2)-B(1)-N(5)
N(3)-B(1)-N(5)
N(2)-B(1)-H(1A)
N(3)-B(1)-H(1A)
N(5)-B(1)-H(1A)
109.12(16)
109.68(18)
107.50(18)
110.00
112.00
109.00
S33
_____________________________________________________________
Symmetry transformations used to generate equivalent atoms:
Table S-8. Anisotropic Displacement Parameters (Å2x 103) for 34. The anisotropic
displacement factor exponent takes the form: -2ᴫ2[ h2 a*2U11 + ... + 2 h k a* b* U12 ]
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
Mo(1) 15(1)
16(1)
18(1)
-1(1)
-1(1)
0(1)
O(1)
35(1)
54(1)
24(1)
4(1)
-9(1)
-2(1)
O(2)
O(3)
O(4)
O(5)
O(6)
N(1)
N(2)
N(3)
N(4)
N(5)
47(1)
48(1)
41(1)
54(1)
49(1)
20(1)
18(1)
17(1)
18(1)
25(1)
20(1)
27(1)
24(1)
29(1)
44(1)
20(1)
24(1)
25(1)
21(1)
18(1)
57(1)
30(1)
28(1)
30(1)
53(1)
22(1)
22(1)
22(1)
22(1)
27(1)
0(1)
3(1)
-1(1)
-4(1)
-17(1)
-2(1)
0(1)
-4(1)
-1(1)
-1(1)
7(1)
-22(1)
-10(1)
-1(1)
1(1)
-3(1)
-4(1)
-2(1)
-1(1)
-5(1)
-8(1)
-3(1)
-3(1)
8(1)
-11(1)
-2(1)
0(1)
2(1)
-1(1)
0(1)
N(6)
N(7)
N(9)
N(8)
C(1)
C(2)
C(3)
C(4)
C(5)
C(6)
21(1)
21(1)
31(1)
27(1)
23(1)
29(1)
27(1)
25(1)
23(1)
18(1)
20(1)
20(1)
34(1)
33(1)
35(1)
44(1)
29(1)
29(1)
46(1)
39(1)
24(1)
21(1)
28(1)
24(1)
26(1)
24(1)
24(1)
23(1)
25(1)
27(1)
-1(1)
-4(1)
-4(1)
-6(1)
5(1)
-2(1)
-6(1)
2(1)
-3(1)
-8(1)
-4(1)
-6(1)
2(1)
0(1)
-7(1)
-10(1)
-5(1)
-1(1)
4(1)
1(1)
-2(1)
2(1)
-3(1)
6(1)
0(1)
-6(1)
-4(1)
-7(1)
-6(1)
1(1)
C(7)
C(8)
C(9)
C(10)
C(11)
C(12)
28(1)
39(1)
39(1)
21(1)
24(1)
20(1)
24(1)
20(1)
17(1)
25(1)
22(1)
26(1)
32(1)
41(1)
34(1)
23(1)
27(1)
23(1)
-2(1)
-4(1)
-2(1)
-1(1)
-2(1)
4(1)
-9(1)
-6(1)
-5(1)
-2(1)
1(1)
4(1)
-5(1)
-7(1)
-1(1)
-1(1)
-1(1)
3(1)
S34
C(13)
21(1)
27(1)
18(1)
-3(1)
-2(1)
4(1)
C(14)
C(15)
C(16)
C(17)
C(18)
C(19)
C(20)
C(21)
C(22)
22(1)
26(1)
63(2)
43(1)
44(2)
71(2)
72(2)
43(2)
43(2)
21(1)
26(1)
29(1)
30(1)
54(2)
66(2)
60(2)
59(2)
40(2)
20(1)
21(1)
28(1)
22(1)
34(1)
30(1)
42(2)
76(3)
48(2)
-4(1)
-4(1)
3(1)
4(1)
-9(1)
-11(1)
8(2)
28(2)
10(1)
-5(1)
-5(1)
-21(1)
-13(1)
-5(1)
-5(1)
-28(2)
-28(2)
-9(1)
2(1)
1(1)
-1(1)
0(1)
-10(1)
-24(2)
-25(2)
-13(2)
4(1)
C(23)
C(24)
C(25)
C(26)
C(27)
C(28)
C(29)
C(30)
C(31)
C(32)
18(1)
19(1)
26(1)
29(1)
29(1)
27(1)
24(1)
24(1)
30(1)
31(1)
23(1)
20(1)
27(1)
36(1)
49(2)
33(1)
32(1)
38(1)
30(1)
61(2)
29(1)
34(1)
23(1)
23(1)
28(1)
34(1)
33(1)
24(1)
27(1)
28(1)
-3(1)
0(1)
-4(1)
-7(1)
-9(1)
-9(1)
0(1)
0(1)
-1(1)
-3(1)
-5(1)
-1(1)
-2(1)
-7(1)
-6(1)
4(1)
5(1)
2(1)
4(1)
0(1)
-2(1)
-2(1)
5(1)
11(1)
14(1)
0(1)
3(1)
4(1)
4(1)
-1(1)
C(33)
36(2)
85(3)
26(1)
13(1)
-2(1)
11(2)
C(34)
42(2)
58(2)
52(2)
26(2)
5(1)
3(1)
C(35)
37(2)
39(2)
52(2)
13(1)
7(1)
1(1)
B(1)
21(1)
22(1)
25(1)
-2(1)
-4(1)
2(1)
O(7)
109(2)
50(1)
58(2)
-2(1)
-42(2)
-22(1)
C(36)
82(3)
47(2)
79(3)
6(2)
7(2)
-7(2)
______________________________________________________________________________
Table S-9. Hydrogen Coordinates ( x 104) and Isotropic Displacement Parameters (Å2x 10
3) for 34.
______________________________________________________________________________
__
x
y
z
U(eq)
______________________________________________________________________________
__
S35
H(5)
6036
4612
7223
59
H(1)
H(2)
H(3)
H(4)
H(5A)
H(6)
H(7)
H(8)
H(9)
-2947
-1868
491
-862
-3590
-4022
4147
2798
-271
11872
10033
8778
8998
10359
12060
12309
14538
14455
6716
6037
6508
9208
9629
8875
8051
8042
7871
34
38
32
31
38
34
33
39
36
H(12)
H(13)
H(14)
H(16A)
H(16B)
H(18)
H(19)
H(20)
H(21)
H(22)
4232
3056
4142
7834
6007
5761
7084
10067
11784
10471
10176
8268
6481
5027
5438
7209
8247
7984
6750
5708
6866
6774
7346
8903
9303
10033
10706
10647
9899
9202
29
27
26
47
47
53
65
66
69
53
H(23A)
H(23B)
H(24)
H(25A)
H(25B)
H(26)
H(27A)
H(27B)
H(31)
H(32)
7273
6191
5212
5780
6987
8025
9832
9577
7638
6108
8634
8729
10528
6878
7631
5783
6055
4625
3911
5085
7713
8365
7795
6388
6712
7195
6325
6333
5707
3918
28
28
30
31
31
36
44
44
36
49
H(33)
H(34)
H(35)
H(1A)
H(7A)
H(36A)
6474
7887
8768
-2420
3398
4202
6827
8447
8442
12786
6906
8416
3297
3586
4522
7767
5475
4923
61
63
54
28
102
107
S36
H(36B)
3994
9240
5510
107
H(36C)
2329
8855
5275
107
Table S-10. Torsion Angles [°] for 34.
________________________________________________________________
N(4)-Mo(1)-N(1)-N(2)
43.40(14)
N(4)-Mo(1)-N(1)-C(3)
-134.5(2)
N(6)-Mo(1)-N(1)-N(2)
-38.02(14)
N(6)-Mo(1)-N(1)-C(3)
144.0(2)
C(11)-Mo(1)-N(1)-N(2)
C(11)-Mo(1)-N(1)-C(3)
C(12)-Mo(1)-N(1)-N(2)
C(12)-Mo(1)-N(1)-C(3)
C(13)-Mo(1)-N(1)-N(2)
C(13)-Mo(1)-N(1)-C(3)
C(24)-Mo(1)-N(1)-N(2)
C(24)-Mo(1)-N(1)-C(3)
N(1)-Mo(1)-N(4)-N(3)
N(1)-Mo(1)-N(4)-C(4)
131.33(15)
-46.6(2)
-124.46(14)
57.6(2)
-160.19(15)
21.9(2)
-111.92(14)
70.1(2)
-44.67(14)
144.20(19)
N(6)-Mo(1)-N(4)-N(3)
N(6)-Mo(1)-N(4)-C(4)
C(10)-Mo(1)-N(4)-N(3)
C(10)-Mo(1)-N(4)-C(4)
C(11)-Mo(1)-N(4)-N(3)
C(11)-Mo(1)-N(4)-C(4)
C(13)-Mo(1)-N(4)-N(3)
C(13)-Mo(1)-N(4)-C(4)
C(24)-Mo(1)-N(4)-N(3)
39.30(14)
-131.83(19)
138.93(16)
-32.19(19)
-138.55(16)
50.3(2)
-101.99(19)
86.9(2)
95.67(18)
C(24)-Mo(1)-N(4)-C(4)
N(1)-Mo(1)-N(6)-N(5)
N(1)-Mo(1)-N(6)-C(7)
N(4)-Mo(1)-N(6)-N(5)
N(4)-Mo(1)-N(6)-C(7)
C(10)-Mo(1)-N(6)-N(5)
-75.5(2)
38.05(15)
-146.5(2)
-43.27(15)
132.2(2)
-127.61(16)
S37
C(10)-Mo(1)-N(6)-C(7)
47.9(2)
C(12)-Mo(1)-N(6)-N(5)
C(12)-Mo(1)-N(6)-C(7)
C(13)-Mo(1)-N(6)-N(5)
C(13)-Mo(1)-N(6)-C(7)
C(24)-Mo(1)-N(6)-N(5)
C(24)-Mo(1)-N(6)-C(7)
N(1)-Mo(1)-C(12)-C(13)
N(1)-Mo(1)-C(12)-C(24)
N(6)-Mo(1)-C(12)-C(13)
127.97(16)
-56.5(2)
116.60(15)
-67.9(2)
164.05(16)
-20.5(2)
-80.76(13)
162.22(12)
-163.28(13)
N(6)-Mo(1)-C(12)-C(24)
C(10)-Mo(1)-C(12)-C(13)
C(10)-Mo(1)-C(12)-C(24)
C(11)-Mo(1)-C(12)-C(13)
C(11)-Mo(1)-C(12)-C(24)
C(13)-Mo(1)-C(12)-C(24)
C(24)-Mo(1)-C(12)-C(13)
N(1)-Mo(1)-C(13)-C(12)
N(1)-Mo(1)-C(13)-C(14)
N(4)-Mo(1)-C(13)-C(12)
79.70(12)
98.58(14)
-18.45(14)
12.79(15)
-104.23(13)
-117.02(18)
117.02(18)
97.17(13)
-152.85(18)
153.67(15)
N(4)-Mo(1)-C(13)-C(14)
N(6)-Mo(1)-C(13)-C(12)
N(6)-Mo(1)-C(13)-C(14)
C(10)-Mo(1)-C(13)-C(12)
C(10)-Mo(1)-C(13)-C(14)
C(11)-Mo(1)-C(13)-C(12)
C(11)-Mo(1)-C(13)-C(14)
C(12)-Mo(1)-C(13)-C(14)
C(24)-Mo(1)-C(13)-C(12)
C(24)-Mo(1)-C(13)-C(14)
-96.3(2)
19.53(15)
129.52(16)
-92.01(14)
17.97(19)
-166.71(16)
-56.72(17)
110.0(2)
-37.28(13)
72.71(17)
N(1)-Mo(1)-C(24)-C(12)
N(1)-Mo(1)-C(24)-C(23)
N(4)-Mo(1)-C(24)-C(12)
N(4)-Mo(1)-C(24)-C(23)
N(6)-Mo(1)-C(24)-C(12)
N(6)-Mo(1)-C(24)-C(23)
-21.54(15)
-133.40(17)
-152.41(13)
95.7(2)
-96.21(13)
151.94(19)
S38
C(10)-Mo(1)-C(24)-C(12)
161.04(14)
C(10)-Mo(1)-C(24)-C(23)
C(11)-Mo(1)-C(24)-C(12)
C(11)-Mo(1)-C(24)-C(23)
C(12)-Mo(1)-C(24)-C(23)
C(13)-Mo(1)-C(24)-C(12)
C(13)-Mo(1)-C(24)-C(23)
C(16)-O(3)-C(15)-O(4)
C(16)-O(3)-C(15)-N(7)
C(15)-O(3)-C(16)-C(17)
49.19(18)
87.14(14)
-24.7(2)
-111.9(2)
37.09(12)
-74.77(18)
-3.3(4)
177.4(2)
178.4(2)
Mo(1)-N(1)-N(2)-C(1)
Mo(1)-N(1)-N(2)-B(1)
C(3)-N(1)-N(2)-C(1)
C(3)-N(1)-N(2)-B(1)
Mo(1)-N(1)-C(3)-C(2)
N(2)-N(1)-C(3)-C(2)
N(1)-N(2)-C(1)-C(2)
B(1)-N(2)-C(1)-C(2)
N(1)-N(2)-B(1)-N(3)
N(1)-N(2)-B(1)-N(5)
-178.88(14)
-2.6(2)
-0.4(2)
175.93(18)
178.60(16)
0.5(2)
0.2(3)
-175.8(2)
-56.1(2)
61.4(2)
C(1)-N(2)-B(1)-N(3)
C(1)-N(2)-B(1)-N(5)
C(6)-N(3)-N(4)-Mo(1)
C(6)-N(3)-N(4)-C(4)
B(1)-N(3)-N(4)-Mo(1)
B(1)-N(3)-N(4)-C(4)
N(4)-N(3)-C(6)-C(5)
B(1)-N(3)-C(6)-C(5)
N(4)-N(3)-B(1)-N(2)
N(4)-N(3)-B(1)-N(5)
119.5(2)
-123.0(2)
-172.16(14)
0.9(2)
4.3(2)
177.33(18)
-0.8(3)
-176.9(2)
55.8(2)
-63.1(2)
C(6)-N(3)-B(1)-N(2)
C(6)-N(3)-B(1)-N(5)
Mo(1)-N(4)-C(4)-C(5)
N(3)-N(4)-C(4)-C(5)
C(9)-N(5)-N(6)-Mo(1)
C(9)-N(5)-N(6)-C(7)
-128.5(2)
112.6(2)
171.66(16)
-0.5(2)
176.45(15)
-0.3(2)
S39
B(1)-N(5)-N(6)-Mo(1)
3.1(3)
B(1)-N(5)-N(6)-C(7)
N(6)-N(5)-C(9)-C(8)
B(1)-N(5)-C(9)-C(8)
N(6)-N(5)-B(1)-N(2)
N(6)-N(5)-B(1)-N(3)
C(9)-N(5)-B(1)-N(2)
C(9)-N(5)-B(1)-N(3)
Mo(1)-N(6)-C(7)-C(8)
N(5)-N(6)-C(7)-C(8)
-173.6(2)
0.3(3)
173.1(2)
-61.3(3)
57.3(3)
126.7(2)
-114.8(2)
-175.77(17)
0.2(3)
C(15)-N(7)-C(14)-C(13)
C(15)-N(7)-C(14)-C(25)
C(23)-N(7)-C(14)-C(13)
C(23)-N(7)-C(14)-C(25)
C(14)-N(7)-C(15)-O(3)
C(14)-N(7)-C(15)-O(4)
C(23)-N(7)-C(15)-O(3)
C(23)-N(7)-C(15)-O(4)
C(14)-N(7)-C(23)-C(24)
C(15)-N(7)-C(23)-C(24)
149.44(19)
-90.5(2)
-42.3(2)
77.7(2)
174.06(19)
-5.3(3)
6.4(3)
-173.0(2)
41.0(3)
-151.1(2)
C(28)-N(8)-C(27)-C(26)
C(31)-N(8)-C(27)-C(26)
C(27)-N(8)-C(28)-O(6)
C(27)-N(8)-C(28)-C(29)
C(31)-N(8)-C(28)-O(6)
C(31)-N(8)-C(28)-C(29)
C(27)-N(8)-C(31)-N(9)
C(28)-N(8)-C(31)-N(9)
C(31)-N(9)-C(30)-C(29)
C(31)-N(9)-C(30)-C(32)
99.4(3)
-80.4(3)
-0.9(4)
178.5(2)
178.9(2)
-1.7(3)
179.2(2)
-0.6(4)
1.4(4)
-179.7(2)
C(30)-N(9)-C(31)-N(8)
N(2)-C(1)-C(2)-C(3)
C(1)-C(2)-C(3)-N(1)
N(4)-C(4)-C(5)-C(6)
C(4)-C(5)-C(6)-N(3)
N(6)-C(7)-C(8)-C(9)
0.9(4)
0.1(3)
-0.4(3)
0.1(3)
0.5(3)
0.0(3)
S40
C(7)-C(8)-C(9)-N(5)
-0.2(3)
Mo(1)-C(12)-C(13)-C(14)
C(24)-C(12)-C(13)-Mo(1)
C(24)-C(12)-C(13)-C(14)
Mo(1)-C(12)-C(24)-C(23)
C(13)-C(12)-C(24)-Mo(1)
C(13)-C(12)-C(24)-C(23)
Mo(1)-C(13)-C(14)-N(7)
Mo(1)-C(13)-C(14)-C(25)
C(12)-C(13)-C(14)-N(7)
-113.43(17)
70.68(17)
-42.8(3)
112.6(2)
-70.76(17)
41.9(3)
-34.5(2)
-156.55(14)
43.3(3)
C(12)-C(13)-C(14)-C(25)
N(7)-C(14)-C(25)-C(26)
C(13)-C(14)-C(25)-C(26)
O(3)-C(16)-C(17)-C(18)
O(3)-C(16)-C(17)-C(22)
C(16)-C(17)-C(18)-C(19)
C(22)-C(17)-C(18)-C(19)
C(16)-C(17)-C(22)-C(21)
C(18)-C(17)-C(22)-C(21)
C(17)-C(18)-C(19)-C(20)
-78.8(2)
63.3(2)
-174.47(18)
79.3(3)
-97.5(3)
-177.3(3)
-0.5(4)
177.7(3)
0.9(4)
-0.6(5)
C(18)-C(19)-C(20)-C(21)
C(19)-C(20)-C(21)-C(22)
C(20)-C(21)-C(22)-C(17)
N(7)-C(23)-C(24)-Mo(1)
N(7)-C(23)-C(24)-C(12)
C(14)-C(25)-C(26)-O(5)
C(14)-C(25)-C(26)-C(27)
O(5)-C(26)-C(27)-N(8)
C(25)-C(26)-C(27)-N(8)
O(6)-C(28)-C(29)-C(30)
1.2(6)
-0.8(6)
-0.3(5)
37.6(2)
-40.8(3)
59.8(3)
-178.84(19)
74.6(3)
-48.6(3)
-177.0(2)
O(6)-C(28)-C(29)-C(35)
N(8)-C(28)-C(29)-C(30)
N(8)-C(28)-C(29)-C(35)
C(28)-C(29)-C(30)-N(9)
C(28)-C(29)-C(30)-C(32)
C(35)-C(29)-C(30)-N(9)
3.9(4)
3.6(3)
-175.5(2)
-3.7(4)
177.4(2)
175.5(2)
S41
C(35)-C(29)-C(30)-C(32)
-3.5(4)
C(28)-C(29)-C(35)-C(34)
-179.7(3)
C(30)-C(29)-C(35)-C(34)
1.2(4)
N(9)-C(30)-C(32)-C(33)
-176.3(3)
C(29)-C(30)-C(32)-C(33)
2.7(4)
C(30)-C(32)-C(33)-C(34)
0.3(5)
C(32)-C(33)-C(34)-C(35)
-2.7(5)
C(33)-C(34)-C(35)-C(29)
1.9(5)
________________________________________________________________
Symmetry transformations used to generate equivalent atoms:
Table S-11. Hydrogen Bonds for 34 [Å and °].
____________________________________________________________________________
D-H...A
d(D-H)
d(H...A)
d(D...A)
<(DHA)
____________________________________________________________________________
O(5)-H(5)...O(4)
0.8200
2.1400
2.869(3)
148.00
O(7)-H(7A)...N(9)#1
0.8200
2.0300
2.849(3)
176.00
C(8)-H(8)...O(4)#2
0.9300
2.4500
3.250(3)
145.00
C(13)-H(13)...O(7)
0.9800
2.5800
3.421(3)
144.00
C(14)-H(14)...O(4)
0.9800
2.4600
2.800(3)
100.00
C(23)-H(23B)...O(1)
0.9700
2.5500
3.118(3)
117.00
C(23)-H(23B)...O(3)
0.9700
2.2500
2.624(3)
102.00
C(25)-H(25A)...O(7)
0.9700
2.5100
3.419(4)
156.00
C(25)-H(25A)...N(8)
0.9700
2.6200
2.943(3)
100.00
C(27)-H(27A)...O(6)
0.9700
2.3600
2.753(4)
103.00
____________________________________________________________________________
Symmetry transformations used to generate equivalent atoms:
#1 x+1, y+1, z+1 #2 1
5. X-Ray Diffraction Study of ()-35
A suitable crystal of 35 was obtained by diffusion recrystallization from CH2Cl2 and hexanes.
The crystals was mounted onto a nylon fibre with paratone oil and placed under a cold stream at
173(2)K. Single crystal X-ray data were collected on a Bruker APEX2 diffractometer with 1.6
kW graphite monochromated Mo radiations. The detector to crystal distance was 5.1 cm. The
S42
data collection was performed using ω scans with different φ values yielding data in the  range
1.53 to 30.09° with an average completeness of 96.0%. The frames were integrated with the
SAINT v7.68a.2 Amulti-scanabsorption correctionwas carried out using the program SADABS
V2008-1.3 The structure was solved and refined with Olex2,6 a graphical interface to SHELX.4
In the final cycles of refinement all non-hydrogen atoms were refined anisotropically.
ORTEP Diagram of 35.
Table S-12. Crystal Data and Structure Refinement for 35.
Identification code
ks1165
Empirical formula
C16H16N2O3
Formula weight
284.31
Temperature
173.18 K
Wavelength
Crystal system
Space group
Unit cell dimensions
0.71073 Å
Monoclinic
P 21/c
a = 13.934(2) Å
b = 11.8330(18) Å
c = 8.6474(14) Å
S43
α= 90°.
β= 107.603(3)°.
γ = 90°.
Volume
1359.1(4) Å3
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
4
1.389 Mg/m3
0.097 mm-1
600
0.331 x 0.296 x 0.046 mm3
1.53 to 30.09°.
-19<=h<=15, -16<=k<=16, -12<=l<=12
15669
3847 [R(int) = 0.0521]
Completeness to theta = 30.09°
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
96.0 %
Semi-empirical from equivalents
0.7460 and 0.4942
Full-matrix least-squares on F2
3847 / 0 / 190
1.045
R1 = 0.0594, wR2 = 0.1622
R1 = 0.0949, wR2 = 0.1853
0.358 and -0.263 e.Å-3
Table S-13. Atomic Coordinates ( x 104) and Equivalent Isotropic Displacement
Parameters (Å2x 103) for 35. U(eq) is defined as one third of the trace of the
orthogonalized Uij tensor.
______________________________________________________________________________
__
x
y
z
U(eq)
______________________________________________________________________________
__
C(1)
-2460(1)
1381(2)
-373(2)
46(1)
C(2)
-2445(1)
2642(2)
-188(2)
46(1)
C(3)
C(4)
C(5)
C(6)
C(7)
C(8)
-1719(1)
-913(1)
-1146(1)
-120(2)
596(1)
1510(1)
3180(2)
2538(2)
1285(1)
783(2)
1576(2)
1864(2)
S44
888(2)
2095(2)
2076(2)
2860(3)
2341(2)
3748(2)
46(1)
44(1)
42(1)
52(1)
44(1)
45(1)
C(9)
2337(1)
3621(1)
3281(2)
44(1)
C(10)
C(11)
C(12)
C(13)
C(14)
C(15)
C(16)
N(1)
N(2)
3664(1)
4390(2)
5103(2)
5097(2)
4382(1)
3672(1)
2942(1)
2283(1)
2967(1)
3654(2)
4272(2)
3730(2)
2555(2)
1931(2)
2475(1)
1814(1)
2462(1)
4230(1)
2269(2)
1812(2)
1296(2)
1154(2)
1567(2)
2158(2)
2676(2)
3230(2)
2836(2)
44(1)
55(1)
62(1)
60(1)
50(1)
40(1)
41(1)
39(1)
47(1)
O(1)
O(2)
O(3)
-1509(1)
35(1)
2888(1)
888(1)
2588(1)
784(1)
448(1)
1729(2)
2654(2)
43(1)
49(1)
55(1)
Table S-14. Bond Lengths [Å] and Angles [°] for 35.
_____________________________________________________
O(1)-C(1)
1.425(2)
O(1)-C(5)
1.424(2)
O(2)-C(4)
1.450(2)
O(2)-C(7)
O(3)-C(16)
N(1)-C(8)
N(1)-C(9)
N(1)-C(16)
N(2)-C(9)
N(2)-C(10)
C(1)-C(2)
C(2)-C(3)
1.441(2)
1.221(2)
1.467(3)
1.374(2)
1.389(2)
1.281(3)
1.391(2)
1.501(3)
1.313(3)
C(3)-C(4)
C(4)-C(5)
C(5)-C(6)
C(6)-C(7)
C(7)-C(8)
C(10)-C(11)
1.490(3)
1.516(2)
1.506(3)
1.532(3)
1.511(3)
1.399(3)
S45
C(10)-C(15)
1.399(2)
C(11)-C(12)
C(12)-C(13)
C(13)-C(14)
C(14)-C(15)
C(15)-C(16)
C(1)-H(1A)
C(1)-H(1B)
C(2)-H(2)
C(3)-H(3)
1.367(3)
1.396(3)
1.371(3)
1.401(3)
1.456(3)
0.9900
0.9900
0.9500
0.9500
C(4)-H(4)
C(5)-H(5)
C(6)-H(6A)
C(6)-H(6B)
C(7)-H(7)
C(8)-H(8A)
C(8)-H(8B)
C(9)-H(9)
C(11)-H(11)
C(12)-H(12)
1.0000
1.0000
0.9900
0.9900
1.0000
0.9900
0.9900
0.9500
0.9500
0.9500
C(13)-H(13)
C(14)-H(14)
C(1)-O(1)-C(5)
C(4)-O(2)-C(7)
C(8)-N(1)-C(9)
C(8)-N(1)-C(16)
C(9)-N(1)-C(16)
C(9)-N(2)-C(10)
O(1)-C(1)-C(2)
C(1)-C(2)-C(3)
0.9500
0.9500
110.88(13)
108.31(13)
120.66(15)
117.53(14)
121.80(16)
116.43(15)
111.91(15)
122.71(17)
C(2)-C(3)-C(4)
O(2)-C(4)-C(3)
O(2)-C(4)-C(5)
C(3)-C(4)-C(5)
O(1)-C(5)-C(4)
O(1)-C(5)-C(6)
120.37(16)
111.71(14)
104.11(14)
112.18(15)
110.14(13)
108.67(15)
S46
C(4)-C(5)-C(6)
102.15(15)
C(5)-C(6)-C(7)
O(2)-C(7)-C(6)
O(2)-C(7)-C(8)
C(6)-C(7)-C(8)
N(1)-C(8)-C(7)
N(1)-C(9)-N(2)
N(2)-C(10)-C(11)
N(2)-C(10)-C(15)
C(11)-C(10)-C(15)
103.85(16)
106.77(16)
109.84(14)
111.57(16)
112.41(14)
125.98(17)
119.01(16)
122.27(16)
118.72(17)
C(10)-C(11)-C(12)
C(11)-C(12)-C(13)
C(12)-C(13)-C(14)
C(13)-C(14)-C(15)
C(10)-C(15)-C(14)
C(10)-C(15)-C(16)
C(14)-C(15)-C(16)
O(3)-C(16)-N(1)
O(3)-C(16)-C(15)
N(1)-C(16)-C(15)
120.48(19)
120.6(2)
120.0(2)
119.76(19)
120.32(17)
119.59(16)
120.09(16)
120.83(17)
125.26(17)
113.91(14)
O(1)-C(1)-H(1A)
O(1)-C(1)-H(1B)
C(2)-C(1)-H(1A)
C(2)-C(1)-H(1B)
H(1A)-C(1)-H(1B)
C(1)-C(2)-H(2)
C(3)-C(2)-H(2)
C(2)-C(3)-H(3)
C(4)-C(3)-H(3)
O(2)-C(4)-H(4)
109.00
109.00
109.00
109.00
108.00
119.00
119.00
120.00
120.00
110.00
C(3)-C(4)-H(4)
C(5)-C(4)-H(4)
O(1)-C(5)-H(5)
C(4)-C(5)-H(5)
C(6)-C(5)-H(5)
C(5)-C(6)-H(6A)
110.00
110.00
112.00
112.00
112.00
111.00
S47
C(5)-C(6)-H(6B)
111.00
C(7)-C(6)-H(6A)
C(7)-C(6)-H(6B)
H(6A)-C(6)-H(6B)
O(2)-C(7)-H(7)
C(6)-C(7)-H(7)
C(8)-C(7)-H(7)
N(1)-C(8)-H(8A)
N(1)-C(8)-H(8B)
C(7)-C(8)-H(8A)
111.00
111.00
109.00
110.00
110.00
110.00
109.00
109.00
109.00
C(7)-C(8)-H(8B)
H(8A)-C(8)-H(8B)
N(1)-C(9)-H(9)
N(2)-C(9)-H(9)
C(10)-C(11)-H(11)
C(12)-C(11)-H(11)
C(11)-C(12)-H(12)
C(13)-C(12)-H(12)
C(12)-C(13)-H(13)
C(14)-C(13)-H(13)
109.00
108.00
117.00
117.00
120.00
120.00
120.00
120.00
120.00
120.00
C(13)-C(14)-H(14)
120.00
C(15)-C(14)-H(14)
120.00
_____________________________________________________________
Symmetry transformations used to generate equivalent atoms:
Table S-15. Anisotropic Displacement Parameters (Å2x 103) for 35. The anisotropic
displacement factor exponent takes the form: -2ᴫ2[ h2 a*2U11 + ... + 2 h k a* b* U12 ]
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
C(1)
C(2)
C(3)
C(4)
C(5)
C(6)
38(1)
38(1)
44(1)
46(1)
42(1)
46(1)
44(1)
41(1)
36(1)
41(1)
40(1)
46(1)
51(1)
56(1)
58(1)
44(1)
43(1)
57(1)
-1(1)
6(1)
1(1)
-2(1)
3(1)
12(1)
S48
6(1)
11(1)
15(1)
10(1)
10(1)
5(1)
-1(1)
3(1)
-1(1)
-9(1)
-6(1)
-6(1)
C(7)
41(1)
42(1)
42(1)
4(1)
4(1)
-4(1)
C(8)
C(9)
C(10)
C(11)
C(12)
C(13)
C(14)
C(15)
C(16)
41(1)
45(1)
40(1)
50(1)
44(1)
42(1)
42(1)
37(1)
38(1)
48(1)
36(1)
41(1)
53(1)
82(2)
87(2)
59(1)
40(1)
37(1)
41(1)
44(1)
42(1)
55(1)
55(1)
48(1)
43(1)
37(1)
42(1)
1(1)
-5(1)
0(1)
6(1)
15(1)
7(1)
0(1)
-1(1)
-4(1)
6(1)
4(1)
0(1)
5(1)
8(1)
9(1)
2(1)
0(1)
1(1)
-4(1)
4(1)
-2(1)
-10(1)
-8(1)
11(1)
11(1)
2(1)
1(1)
N(1)
N(2)
O(1)
O(2)
O(3)
36(1)
47(1)
39(1)
38(1)
58(1)
36(1)
37(1)
38(1)
44(1)
34(1)
41(1)
52(1)
47(1)
59(1)
71(1)
-3(1)
-3(1)
-2(1)
13(1)
-6(1)
4(1)
6(1)
8(1)
6(1)
14(1)
-1(1)
0(1)
0(1)
-6(1)
0(1)
Table S-16. Hydrogen Coordinates ( x 104) and Isotropic Displacement Parameters (Å2x
10 3) for 35.
______________________________________________________________________________
__
x
y
z
U(eq)
______________________________________________________________________________
__
H(1A)
H(1B)
H(2)
H(3)
-2980
-2645
-2982
-1708
1060
1188
3070
3983
67
-1540
-879
898
55
55
55
56
H(4)
H(5)
H(6A)
H(6B)
H(7)
H(8A)
-822
-1624
-79
38
814
1301
2849
1110
4
768
1212
2343
3206
2704
2465
4055
1459
4529
53
51
62
62
52
54
S49
H(8B)
1802
1159
4314
54
H(9)
H(11)
H(12)
H(13)
H(14)
1864
4387
5609
5587
4370
4007
5074
4157
2188
1132
3682
1861
1031
771
1454
52
66
74
72
60
Table S-17. Torsion Angles [°] for 35.
________________________________________________________________
C(5)-O(1)-C(1)-C(2)
C(1)-O(1)-C(5)-C(4)
C(1)-O(1)-C(5)-C(6)
C(4)-O(2)-C(7)-C(8)
C(4)-O(2)-C(7)-C(6)
C(7)-O(2)-C(4)-C(5)
C(7)-O(2)-C(4)-C(3)
C(8)-N(1)-C(9)-N(2)
C(16)-N(1)-C(8)-C(7)
C(9)-N(1)-C(16)-C(15)
50.10(18)
-66.18(18)
-177.31(14)
-111.65(16)
9.47(18)
-30.25(16)
-151.52(14)
-178.77(17)
-83.41(19)
-0.4(2)
C(9)-N(1)-C(16)-O(3)
C(8)-N(1)-C(16)-C(15)
C(16)-N(1)-C(9)-N(2)
C(8)-N(1)-C(16)-O(3)
C(9)-N(1)-C(8)-C(7)
C(9)-N(2)-C(10)-C(15)
C(10)-N(2)-C(9)-N(1)
C(9)-N(2)-C(10)-C(11)
O(1)-C(1)-C(2)-C(3)
179.34(16)
178.88(14)
0.5(3)
-1.4(2)
95.90(19)
1.1(3)
-0.8(3)
-178.07(16)
-14.1(3)
C(1)-C(2)-C(3)-C(4)
C(2)-C(3)-C(4)-C(5)
C(2)-C(3)-C(4)-O(2)
O(2)-C(4)-C(5)-C(6)
C(3)-C(4)-C(5)-O(1)
O(2)-C(4)-C(5)-O(1)
-5.7(3)
-9.4(3)
107.1(2)
38.70(17)
44.3(2)
-76.63(17)
S50
C(3)-C(4)-C(5)-C(6)
159.66(16)
C(4)-C(5)-C(6)-C(7)
O(1)-C(5)-C(6)-C(7)
C(5)-C(6)-C(7)-C(8)
C(5)-C(6)-C(7)-O(2)
O(2)-C(7)-C(8)-N(1)
C(6)-C(7)-C(8)-N(1)
C(11)-C(10)-C(15)-C(14)
C(11)-C(10)-C(15)-C(16)
C(15)-C(10)-C(11)-C(12)
-32.35(18)
84.04(17)
135.10(17)
15.09(19)
-71.49(19)
170.32(15)
-1.3(2)
178.07(16)
-1.2(3)
N(2)-C(10)-C(15)-C(14)
N(2)-C(10)-C(11)-C(12)
N(2)-C(10)-C(15)-C(16)
C(10)-C(11)-C(12)-C(13)
C(11)-C(12)-C(13)-C(14)
C(12)-C(13)-C(14)-C(15)
C(13)-C(14)-C(15)-C(10)
C(13)-C(14)-C(15)-C(16)
C(10)-C(15)-C(16)-N(1)
C(14)-C(15)-C(16)-O(3)
179.47(16)
178.04(16)
-1.1(3)
2.6(3)
-1.4(3)
-1.1(3)
2.5(3)
-176.92(16)
0.7(2)
0.4(3)
C(14)-C(15)-C(16)-N(1)
-179.86(15)
C(10)-C(15)-C(16)-O(3)
-179.01(17)
________________________________________________________________
Symmetry transformations used to generate equivalent atoms:
Table S-18. Hydrogen Bonds for 35 [Å and °].
____________________________________________________________________________
D-H...A
d(D-H)
d(H...A)
d(D...A)
<(DHA)
____________________________________________________________________________
C(1)-H(1B)...O(3)#1
0.9900
2.5100
3.178(2)
125.00
C(9)-H(9)...O(1)#2
0.9500
2.4500
3.241(2)
141.00
____________________________________________________________________________
Symmetry transformations used to generate equivalent atoms:
#1 2 #2 x, y, z
S51
6. Bioassay Methods
In vitro susceptibility
P. knowlesi:The H strain of P. knowlesihas been adapted to in vitro culture using
Macacamulatta
supplemented
(rhesus monkey) RBCs essentially as described,7 but the media was
with
10%
human
AB
serum
from
the
Tennessee
Blood
Bank.
Compounds: Chloroquine phosphate (Sigma) and mefloquine (Sigma) were used as controls and
were prepared in 70% ethanol as described.8 Six isofebrifugin analogs were dissolved in 70%
200-proof pharmaceutical grade ethanol (ACROS) to prepare stock solutions of 1 mg/ml. Further
dilutions were obtained using supplemented RPMI-1640 (GIBCO), lacking serum, sodium
bicarbonate, hypoxanthine and gentamicin. Compound 185 was dissolved in a DMSO/ethanol
combination. Well with and without analogs were set up in duplicate.
Incorporation assay: Parasite inoculum was prepared by mixing parasitized blood, uninfected
rhesus RBCs and culture medium (deficient in hypoxanthine and gentamicin) to a final
concentration of 1% parasitemia and 1% haematocrit. A negative control was prepared by
diluting uninfected erythrocytes to 1% haematocrit in culture medium. Positive controls included
parasitized RBCs without drug and parasitized RBCs with DMSO/ethanol dilutions as used for
drug 185. [3H]-labeled hypoxanthine was added at 12 h and the culture was collected 12 h later.
[3H] uptake was measured by using a scintillation spectrophotometer (WallacOy 1450 MicroBeta
reader).
7
Kocken, C. H.; Ozwara, H.; van der Wel, A.; Beetsma, A. L.; Mwenda, J. M.; Thomas, A. W.,
Plasmodium knowlesi provides a rapid in vitro and in vivo transfection system that enables
double-crossover gene knockout studies. Infect Immun. 2002, 70, 655-660.
8
Desjardins, R. E.; Canfield, C. J.; Haynes, J. D.; Chulay, J. D., Quantitative assessment of
antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents
Chemother. 1979,16, 710-718.
S52
Data Analysis: The counts were imported to Microsoft Excel and analyzed with its add-in
XLFit software for curve fitting and data analysis (IDBS). The sigmoidal model 601 was utilized
to determine the dose-response curve and to calculate the concentration causing 50% growth
inhibition (IC50) for each compound. The IC50 was calculated for each drug concentration as
Log2 by comparison of the radioactivity incorporated (cpm) in the treated culture with half of the
average of cpms in the control culture maintained on the same plate. The IC50 in Log2 units was
converted to ng/ml [=Power (2 IC50 Log2)] and M [IC50 ng/ml/MW] concentration as needed.
The linear correlation coefficient has been included in this analysis to demonstrate variability
between triplicate wells and curve fitting.
Results:
The in vitro antimalarial activity of isofebrifugine analogs was determined as IC50 values for
the inhibition of proliferation of the P. knowlesi H strain. Data shown below correspond to the
average of two experiments. Modest antimalarial activity was observed with analogs 37, 37' and
38 showing inhibitory concentrations under 12 mM, activity that is higher than the inhibitory
concentration achieved with chloroquine and mefloquine, used here as controls. The linear
correlation coefficient (Lin Corel Cf) has been included in this analysis to demonstrate
variability between duplicate wells and curve fitting. b Re-suspended in ethanol and DMSO.
Table S-19.
CQ
MQ
38
38'
37
37'
40*
IC50M
0.010
0.015
11.435
13.620
10.285
11.325
26.790
StdDev
0.000
0.007
0.870
1.739
0.007
0.460
0.863
Lin Corel Cf
0.98
0.96
0.94
0.94
0.95
0.96
0.87
* Re-suspended in ethanol and DMSO
S53