MATH 32A, BRIDGE 2013 M. Wang Homework 3 Solution 1. Compute the dot product. (13.3 Exercises 1, 10) a. h1, 2, 1i · h4, 3, 5i Ans: h1, 2, 1i · h4, 3, 5i = 4 + 6 + 5 = 15 b. (3j + 2k) · (i − 4k) Ans : (3j + 2k) · (i − 4k) = 3i · j − 12j · k + 2i · k − 8k · k = 0 − 0 + 0 − 8 = −8 2. Find the cosine of the angle between the vectors.(13.3 Exercises 19, 22) a. h0, 3, 1i, h4, 0, 0i Ans: cos θ = h0,3,1i·h4,0,0i kh0,3,1ikkh4,0,0ik =0 b. 3i + k, i + j + k Ans: cos θ = (3i+k)(i+j+k) k3i+kkki+j+kk = √ 4√ 10 3 = √ 2 30 15 3. Simplify the expression. (13.3 Exercises 35, 37) a. (v − w) · v + v · w Ans: (v − w) · v + v · w = v2 − v · w + v · w = v2 b. (v + w) · v − (v + w) · w Ans: (v + w) · v − (v + w) · w = v2 + w · v − v · w − w2 = v2 − w2 4. Show that if e and f are unit vectors such that ke + f k = 32 , then ke − f k = e · f = 81 . (13.3 Exercises 47) Proof. Since e and f are unit vectors, we know that e · e = kek2 = f · f = kek2 = 1 ke + f k = 9 9 3 =⇒ (e + f )2 = =⇒ e2 + f 2 + 2e · f = 2 4 4 1 7 2 2 =⇒ 2e · f = =⇒ e + f − 2e · f = 4 √ 4 7 =⇒ ke − f k = 2 5. Find the projection of u along v. (13.3 Exercises 51, 55) 1 √ 7 2 . Hint: Show that a. u = h2, 5i, v = h1, 1i 7 7 7 Ans: uk = u·v v = v·v 2 h1, 1i = h 2 , 2 i b. u = 5i + 7j − 4k, v = k −4 v = Ans: uk = u·v v·v 1 k = −4k 6. Find the decomposition a = ak + a⊥ with respect to b. (13.3 Exercises 64, 65) a. a = h2, −3i, b = h5, 0i Ans: ak = 10 25 h5, 0i = h2, 0i, a⊥ = a − ak = h0, −3i b. a = h4, −1, 0i, b = h0, 1, 1i 1 1 1 1 Ans: ak = −1 2 h0, 1, 1i = h0, − 2 , − 2 i, a⊥ = a − ak = h4, − 2 , 2 i 2
© Copyright 2026 Paperzz