The Oakwood Academy Circle Theorems (Proof Questions/Linked with other Topics) Page 1 (G10) The Oakwood Academy Q1.(a) The diagram shows a circle, centre O, with diameter AB. Not drawn accurately Work out the size of angle x You must show your working, which may be on the diagram. .......................................................................................................................... .......................................................................................................................... .......................................................................................................................... .......................................................................................................................... Answer ........................................................ degrees (2) Page 2 The Oakwood Academy (b) The diagram shows a circle touching a square at A, B, C and D. Not drawn accurately Give reasons to show why y = 45° .......................................................................................................................... .......................................................................................................................... .......................................................................................................................... .......................................................................................................................... .......................................................................................................................... (3) (Total 5 marks) Page 3 The Oakwood Academy Q2. A, B and C are points on the circumference of a circle. • BC is a diameter • BCP is a straight line • AP is a tangent to the circle • PC = CA Work out the value of angle CPA, marked x on the diagram. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. x = ..................................................................... degrees (Total 5 marks) Page 4 The Oakwood Academy Q3. R, S and T are on the circumference of a circle, centre O. (a) Give a reason why angle OTS = x .......................................................................................................................... .......................................................................................................................... (1) (b) Work out the value of x. .......................................................................................................................... .......................................................................................................................... .......................................................................................................................... .......................................................................................................................... .......................................................................................................................... Answer................................................................ degrees (3) (Total 4 marks) Page 5 The Oakwood Academy Q4. ABP and ADQ are tangents to the circle, centre O. C lies on the circumference of the circle. Prove that y = 2x Give reasons for any statements you make. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. (Total 6 marks) Page 6 The Oakwood Academy Q5. A, B and C are points on a circle. • • BC bisects angle ABQ. PBQ is a tangent to the circle. Not drawn accurately Angle CBQ = x Prove that AC = BC .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. (Total 3 marks) Page 7 The Oakwood Academy Q6. (a) A, B and C are points on a circle, centre O. Not drawn accurately AB is a diameter. The ratio of the size of angle x to the size of angle y is x:y = 5:1 Work out the size of angle z. .......................................................................................................................... .......................................................................................................................... .......................................................................................................................... .......................................................................................................................... .......................................................................................................................... Answer ........................................................ degrees (3) Page 8 The Oakwood Academy (b) L, M and N are points on a circle. PLQ is a tangent. Not drawn accurately Work out angle MLN. .......................................................................................................................... .......................................................................................................................... .......................................................................................................................... Answer ........................................................ degrees (3) (Total 6 marks) Page 9 The Oakwood Academy Q7. ABCD is a cyclic quadrilateral. Work out the values of x and y. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. x = ............................. , y = ............................ (Total 5 marks) Page 10 The Oakwood Academy Q8.The diagram shows a circle centre O. A and C are points on the circumference. AB and CB are tangents. Not drawn accurately (a) Work out the size of angle x. ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... Answer ........................................................ degrees (2) (b) Write down the length of BC. Give a reason for your answer. Answer ........................................................................................... cm Reason........................................................................................................... ......................................................................................................................... (1) Page 11 The Oakwood Academy (c) Work out the radius of the circle. ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... Answer ................................................................ cm (3) (Total 6 marks) Q9.The diagram shows a circle, centre O. AB is a tangent. Not drawn accurately Work out the length OB. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. Answer ................................................................ cm (Total 4 marks) Page 12 The Oakwood Academy Q10. In the diagram, AB = BC Prove that ABCD is a cyclic quadrilateral. Give reasons for any statements you make. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. (Total 3 marks) Page 13 The Oakwood Academy M1.(a) OCA = 36 or ACB = 90 or COA = 108 or COB = 72 or OBC = 54 or 90 − 36 or (180 − 72) ÷ 2 oe May be on diagram M1 54 A1 (b) (Triangle) RDC is isosceles or RC and RD are equal tangents May be implied from 90 and 45 in triangle RDC B1 Angle RDC = y or Angle RCD = y B1 Angle RDC or Angle RCD is 45 and alternate segment (theorem) stated Strand (ii) Complete reasons with both B marks scored Q1 [5] Page 14 The Oakwood Academy M2. Correct expressions or value for any three of these angles angle PAC = x angle CAB = 90 angle PBA = x angle PCA = 180 − 2x or 90 + x angle ACB = 90 − x or 2x angle COA = 2x or 90 − x angle PAO = 90 angle CAO = 90 − x or 2x angle BAD = 2x or 90 − x angle AOB = 180 − 2x or 90 + x angle OAB = x O is the centre of the circle D is the point at the end of PA extended B2 Any 2 correct B1 Any 1 correct B3 Writes a correct equation that has solution 30 e.g. 1 PAC + CAB + x + PBA = 180 e.g. 2 PCA + ACB = 180 e.g. 3 ACB + CAB + CBA = 180 e.g. 4 PAO + APC + POA = 180 oe M1 30 A1 [5] Page 15 The Oakwood Academy M3. (a) Valid reason e.g.1 Triangle OTS is isosceles e.g.2 OT = OS e.g.3 OT and OS are radii B1 (b) Correct equation e.g.1 5x = 2(x + 30) e.g.2 2.5x = x + 30 e.g.3 (180 − 2x) + 120 + 5x = 360 e.g.4 x + 30 + x + 30 + 360 − 5x = 360 oe Brackets not needed in e.g.3 M1 Collects terms for their initial equation e.g.1 5x − 2x = 60 e.g.2 2.5x − x = 30 e.g.3 − 2x + 5x = 360 − 180 − 120 oe their initial equation must have ≥ 2 terms in x Any brackets must be expanded correctly M1 20 A1 [4] M4. Join BD Angle BDC = 2x Alternate segment theorem M1 Angle BDO = x M1 Page 16 The Oakwood Academy Angle DBO = x Isosceles triangle BOD M1 Angle BOD = 180 − 2x Angle sum of triangle BOD M1 y = 360 − 90 − 90 − (180 − 2x) y = 2x Angle sum of quadrilateral ABOD y = 2x clearly shown from simplification A1 Must have at least two different reasons stated in the proof B1ft Alternative method 1 Angle OBC = 90 − 2x Tangent-radius property M1 Angle OCB = 90 − 2x Isosceles Δ OBC M1 Angle OCD = x Isosceles Δ OCD M1 Angle BCD = 90 – 2x + x = 90 – x hence Angle BOD = 180 − 2x Angle at centre = 2 × angle at circumference M1 y = 360 − 90 − 90 − (180 − 2x) y = 2x Angle sum of quadrilateral ABOD y = 2x clearly shown from simplification A1 Must have at least two different reasons stated in the proof B1ft Alternative method 2 Page 17 The Oakwood Academy Angle OBC = 90 − 2x Tangent-radius property M1 Angle OCB = 90 − 2x Isosceles Δ OBC M1 Angle OCD = x Isosceles Δ OCD M1 Angle BCD = 90 − 2x + x = 90 − x hence Angle BOD = 180 − 2x Angle at centre = 2 × angle at circumference M1 Angle BOD = 360 − 90 − 90 − y = 180 − y hence y = 2x Angle sum of quadrilateral ABOD y = 2x clearly shown from simplification A1 Must have at least two different reasons stated in the proof B1ft Alternative method 3 Angle OBC = 90 − 2x Tangent-radius property M1 Angle OCB = 90 − 2x Isosceles Δ OBC M1 Angle OCD = x Isosceles Δ OCD M1 Angle BCD = 90 − 2x + x = 90 – x M1 y = 360 − 90 − (90 − 2x) − (90 − x) − x − 90 hence y = 2x Angle sum of quadrilateral ABCD y = 2x clearly shown from simplification Page 18 The Oakwood Academy A1 Must have at least two different reasons stated in the proof B1ft Alternative method 4 Angle BOD = 180 − y Angle sum of quadrilateral ABOD M1 Angle OCD = x Isosceles Δ OCD M1 Angle OBC = 90 − 2x Tangent-radius property M1 Angle BCO = 90 − 2x hence Angle BOD reflex = 360 − (90 − 2x) − (90 − 2x) − x − x = 180 + 2x Isosceles Δ OBC Angle sum of quadrilateral BODC ... this can also come from Angle BOC (4x) + Angle DOC (180 − 2x) M1 180 − y + 180 + 2x = 360 hence y = 2x Angles round a point y = 2x clearly shown from rearranging A1 Must have at least two different reasons stated in the proof B1ft [6] M5. angle ABC = x M1 angle BAC = x and alternate segment theorem M1 Page 19 The Oakwood Academy angle ABC = x and angle BAC = x and alternate segment theorem and two equal angles so isosceles (AC = BC) A1 [3] M6. (a) 90 seen or implied B1 90 ÷ 6 or 15 or 90 ÷ 6 × 5 or 75 oe M1 30 A1 Additional Guidance 30 without working B1M1A1 (b) Angle LMN = 80 or angle MLP = 58 May be on diagram M1 180 − 80 − 58 oe M1 42 A1 [6] M7. Any one of these equations 2x + y + 20 = 180 or x + 2y + y + 40 = 180 or Page 20 The Oakwood Academy 2x + y + 20 = x + 2y + y + 40 or 2x + y + 20 + x + 2y + y + 40 = 360 oe M1 Another of these equations 2x + y + 20 = 180 or x + 2y + y + 40 = 180 or 2x + y + 20 = x + 2y + y + 40 or 2x + y + 20 + x + 2y + y + 40 = 360 oe these simplify to ... 2x + y = 160 or x + 3y = 140 or x − 2y = 20 or 3x + 4y = 300 M1 equating coefficients and elimination of x or y for their equations e.g. x + 3y = 140 and 6x + 3y = 480 or 2x + 6y = 280 and 2x + y = 160 rearrangement and substitution for their equations e.g. y = 160 − 2x and x + 3(160 − 2x) = 140 or x = 140 − 3y and 2(140 − 3y) + y = 160 M1dep Allow one numerical error for the 3rd M1, but not an error in method (e.g. adding equations when they ought to be subtracted is an error in method, so M0) 5x = 340 or 5y = 120 ft their elimination or substitution M1dep Page 21 The Oakwood Academy x = 68 and y = 24 A1 [5] M8.(a) 180 − 90 − 74 or 90 − 74 M1 16 A1 (b) 8.7 and tangents from the same point (are equal) oe B1 (c) tan 74 = = or tan 16 = M1 or 8.7 tan 16 M1dep 2.49(…) or 2.5 ft from part (a) A1ft [6] Page 22 The Oakwood Academy M9.90 seen or implied 90 may be on diagram or may implied by use of Pythagoras or trigonometry M1 8.32 + 5.22 sin 32.(067…) or cos 57.(9326…) = or cos 32.(067…) or sin 57.(9326…) = M1 or M1dep 9.79 … or 9.8 Accept 10 if working seen A1 [4] M10. ∠ACB = x and (Triangle ABC is) isosceles oe M1 ∠ABC = 180 − 2x and Angle sum of triangle (is 180°) oe ∠CAD + ∠ACD = 180 − 2x and Angle sum of triangle (is 180°) M1 Page 23 The Oakwood Academy 180 − 2x + 2x = 180 and Opposite angles of cyclic quadrilateral (add up to 180°) Must have seen working for both M marks oe e.g. ∠ABC + ∠ADC = 180 and Opposite angles of cyclic quadrilateral SC2 ‘Correct’ solution with one reason missing SC1 ‘Correct’ solution with > 1 reason missing A1 [3] Page 24
© Copyright 2026 Paperzz