GEOPHYSICAL RESEARCH LETTERS, VOL. 26, NO. 16, PAGES 2485-2488, AUGUST 15, 1999 Millennial-scale climatic change during the last interglacial period: Superparamagnetic sediment proxy from paleosol S1, ß western Chinese Loess Plateau Xiao-Min FangandLi Ji-Jun Department of Geography, LanzhouUniversity,Lanzhou,Gansu,China SubirK. BanerjeeandMike Jackson Institutefor RockMagnetism,Department of GeologyandGeophysics, Universityof Minnesota,Minneapolis, Minnesota Eric A. Oches Department of Geology,Universityof SouthFlorida,Tampa,Florida Rob Van der Voo Department of GeologicalSciences, theUniversityof Michigan,AnnArbor,Michigan LoessPlateau[Liu, 1985], but has yieldedmore problematic resultsin other loessareas[e.g., Ochesand Banerjee,1996; reveal high-resolutionsignalsof summermonsoonchange. Grimley et al., 1998]. Magnetic susceptibilityin 1oessand and The last interglacialperiodis represented hereby the 8-meter paleosolsis largelya functionof the type, concentration thick SI paleosolcomplex.We have usedlow-temperature grain size of ferrimagneticminerals. The susceptibility remanencestudiesto analyzevariationsin the concentration contributionsof paramagneticand diamagneticmineralsare but they become of superparamagnetic (SP) grains,which previousstudies relativelyminor in mostof thesesediments, are low. The have shownto be largely of pedogenicorigin. The SP con- importantwhen ferrimagneticconcentrations to climatevariationsis the sumof centration,interpretedas a proxyfor the extentof pedogene- responseof susceptibility sis, showsmillennial scalevariationswithin SI. We conclude the separateresponses of thesediversemineralogies, and it that the last interglacialperiodin Asia was characterized by may thereforebe rathercomplex. A more selective proxy is the abundanceof ultrafine rapid climatefluctuations,with at leastone brief returnto (SP; < 0.03 gm for magnetite[Dunlop, near-glacialconditionsin the middleof oxygen-isotope sub- superparamagnetic 1973]) grains. Recent rock magnetic investigationshave stage5e. demonstratedthat SP grains are mostly pedogenicin origin and are largelyresponsiblefor the enhancement of magnetic susceptibility in soil [MaherandTaylor, 1988;Banerjeeet al., Introduction 1993; Evans and Heller, 1994]. The contentof SP grains Climaticinstabilityduringthe last interglacialperiodhas changestremendously with the degreeof soil development, becomea subjectof great debatesincecontradictory results which in turn is controlledby summermonsoonprecipitation were obtainedfrom two ice coresin Greenland[Dansgaardet and temperature[Banerjeeet al., 1993; Liu et al., 1995], as al., 1993;Grooteset al., 1993].Thisdebatehasattractedcon- well as time. siderable international attention because climate records for We have carried out a detailedstudyof the variationin the last interglacialperiodhave fundamentalimportancefor concentration of SP grainsfor the last-interglacial SI paleosol our understanding of currentclimatetrends.Up to now, the complex in the Jiuzhoutaiwell 1oesssectionin Lanzhou debatehas been basedmostlyon climaticrecordsfrom the (36øN and 103ø50'E),on the westernChineseLoessPlateau. North Atlantic and peripheralareas[Thouvenyet al., 1994; As we will show, the resultsallow us to resolve a millennialMaslin and Tzedakis, 1996; Fronval and Jansen,1996; Kukla scalesummermonsoonhistoryfor the lastinterglacialperiod. et al., 1997]. A few recordsfrom the ChineseLoessPlateau, basedon magneticsusceptibility, carbonateand grain size, Geologyand Sampling showthatthe last interglacialAsianmonsoonmay alsohave Lanzhou is located at the northwestern front of summer undergonelargevariations[Fanget al., 1995;An and Porter, 1997]. monsoon circulation. This front encompasses a strong Bulk magneticsusceptibility has provento be a relatively gradientbetween warm, humid air massesover the Pacific preciseproxy of summermonsoonstrengthin the central and Indian Oceans,and cold, dry air massescenteredon Siberia and West Mongolia. Thus, modem precipitation, vegetation and soil biologicalactivity in Lanzhouare very Copyright1999by theAmericanGeophysical Union. sensitive to any summer monsoonalcirculation changes. Furthermore,the Jiuzhoutaisectionis the highest-resolution Papernumber1999GL008335. 0094-8276/99/1999GL008335505.00 1oessrecordin the world, containingthe greatesttotal accuAbstract. Detailed magneticanalysesof samplesfrom the Jiuzhoutai well section on the western Chinese Loess Plateau 2485 2486 FANG ET AL.' MILLENNIAL-SCALE CLIMATE CHANGE ON THE LOESS PLATEAU mulation(3 l 8 m), whichformedin a relativelyshorttime (1.3 and thesemustbe recognizedand accountedfor separately. Ma) [Burbankand Li, 1985], yieldinga mean sedimentation Magnetite-bearing sediments generallyexhibita sharplossof overa narrowtemperature intervalassociated with rateof about245 mm/ka.The embeddedS1 paleosolcomplex remanence formedmainlybetweenabout150 and 75 ka, and it reachesa both the Verwey transition(110-120 K) and the magnetothickness of 8 m near Lanzhou, three to four times thicker crystallineK1 isotropicpoint (~130 K) [Verwey, 1939; than the corresponding paleosolsin the centralLoessPlateau DunlopandOzdemir,1997]. Low-temperature remanence [Liu, 19851. carriedby othermineralsmay alsodropsharplyovercharacto N6el pointsor To obtainfreshsamples,a 40-meterdeepwell wasdugat teristictemperaturerangescorresponding the top of the Jiuzhoutaisection.The well sectionconsistsof other transitions. Analysisof the thermal decay of lowa distinctivedarkpaleosolcomplex(SO)at the top,the Malan temperatureSIRM thus provides an effective means of loesses(LI-1 to L1-5) and their embeddedweakpaleosolsof identifyingmagneticmineralsand of quantifyingSP grain the Sm complex(Sm-I to Sm-4) in the middle, and the Lishi concentration[Hunt et al., 1995]. 1oesses (L2-1 to L2-3) with their embeddedyellowish-brown The samplesof this studywereanalyzedusinga Quantum paleosolsof the S1 complex(S 1-a to Sl-c) at the bottom. DesignsMPMS (magneticpropertymeasurement system).A Previous and new systematicdating of the sectionby 2.5 Tesla (T) field was usedto saturatethe samplesat 20 radiocarbon,thermoluminescence (TL) and paleomagnetism Kelvin (K). The resultantSIRM (carriedby MD, SD and SP [Li et al., 1992; Fang et al., 1997] showsthat 1oessL0 and grainswith blockingtemperatures above20 K) was then paleosolseriesSOare Holocenein age, whereas1oessseries measuredduringwarmingto 300 K in zero field. Between L I and paleosolsSm were depositedduringthe last glacia- about 100 and 120 K, a sharpdrop in magnetizationis obwith the tion, and L2 and S1 duringthe last Pleistocene interglacial servedfor all samples(Fig. 1). This drop,associated period. Theseassignments are broadlyin accordwith those Verwey transition,confirmsthat magnetiteis a significant for the sequencefrom the centralpart of the LoessPlateau remanencecarrierin all samples. No othermagneticmineror sharp variationsin [Liu, 1985], and they correlatewell with standardmarine als are indicatedby discontinuous oxygen-isotope stages(MIS) [Martinsonet al., 1987]:SO,Sm remanenceat other temperatures. Previousstudieshave and S1 correspondwith warm periods, MIS-I, 3 and 5, shown that the magnetic minerals in Chinese 1oessand paleosolsare chiefly magnetite,maghemiteand hematite respectively. This studyfocuseson the stratigraphic intervalof depth [Heller and Liu, 1984; Heller and Evans, 1995; Hunt et al., with thisconclusion, although 35.3-38.55m, whichencompasses thepeakinterglacial paleo- 1995]. Our dataare consistent sol (Sl-c) of MIS-5e. Bulk sedimentsamplesfor rockmag- theydirectlyconfirmonly the magnetitecontribution. Becausethe sharplossof remanencearound110 K is due netic analysiswere taken at 2.5-cm intervals,providinga nominalresolutionof ca. 180years.SinceTL ageshavelarge to the structuralphasetransition,andnot to thermalunblockerrors,we follow the conventionalmethod[An and Porter, ing, it mustbe tallied separatelyin the estimationof total SP 1997] of refining the chronology:first we correlatethe content. A simplegraphicalmethod[Banerjeeet al., 1993; boundariesof L 1-5/Sl-a, L2-2/S 1-c and S 1-c/L2-3 to thoseof Hunt et al., 1995] was usedto partitionthe low-temperature MIS 4/5 (74 ka), MIS 5d/5e(114 ka) andMIS 5/6 (130 ka), SIRM into three fractions:the stableremanenceremaining respectively [Martinsonet al., 1987];thenwe applyan agedepthmodelbasedon grain size data [Fanget al., 1995] to calculateages for levels betweenthe boundaryages. This 1.2E-2 method is better than linear interpolationbetween dated horizons,becausethe winter monsoonand 1oessdeposition rateshavechangedsharplyin the past[Liu, 1985]. ß 1.0E-2 •' Magnetic Measurements The purposeof our detailedmagneticstudieswasto isolate the contributionsof different magneticmineralsand different size fractionsto the room-temperature low-field susceptibility signal in the Jiuzhoutaisection. In particular,we aimed to quantifythe ultrafineSP fractionof magnetiteandmaghemite grains,which have been linkedby previousstudiesto pedogenieprocesses. Low-temperaturemagnetic measurementsare the most definitivemeansof quantifyingthe concentration of magnetic grainsthat are SP at roomtemperature[Hunt et al., 1995]. A low-temperaturesaturationisothermalremanentmagnetization (SIRM) will be partially thermally demagnetized warmingin zero field. The unblockingtemperature spectrum is closelyrelatedto the distributionof particlesizesin the SP fraction,and the total remanencelossby thermalunblocking is a direct measureof the total massof SP materialpresent [Banerjeeet al., 1993;Hunt et al., 1995]. In addition to the continuous loss of remanence due to thermalunblocking,there are severalothermechanisms that may contributeto remanencelossduringzero-fieldwarming, IE .o_ JZT9-4 (Sl-c) ß JZT9-5 (Sl-c) ß JZT10-2 (Sl-c) •- JZTll-2 A JZT2-10 (L2-2) [] JZT12-5(L2-3) • JZT13-11(L2-3) 8.0E-3 6.0E-3 JZTI-1 (Sl-b) • (Sl-c) ._N = 4.0E-3 2.0E-3 0.0E+0 0 50 100 150 200 250 300 Temperature (Kelvin) Figure 1. Thermaldemagnetization of low-temperature SIRM acquiredat 20 K, for a few representative 1oess andpaleosol samples.Superparamagnetic (SP) contentcan be determined by an extrapolation of a fitted remanencedecaycurve(see text for details).Note the two groupsof curvesseparate clearlythe paleosols (solidsymbols)and1oesses (opensymbols)exceptfor soil sampleJZT10-2,whichmarksa significant fluctuationduring the mid-last interglacialmaximum. Locationsof the samplesarein Figure3. FANG ET AL.' MILLENNIAL-SCALE CLIMATE CHANGE ON THE LOESS PLATEAU 2487 MIS lOO JZT1-1 5c JZT2-10 11o - 5d JZT9-4 JZT9-5 12o 5e2 •' V2 - • 5el •"' JZT10-2____ V4 JZT11-2 5e4 P5 130 5e3 P3 5e5 JZT12-5 -- JZT13-11 I 10 2o x(10 3o -8 (a) 4o 3 m /kg) 5o 0 2 4 2 Msp(Am/kg) (b) 6 ' -40 I -35 a•80(%o) (c) Figure 2. Comparisonof stratigraphic variationsin mass-specific magneticsusceptibility(a) and remanencecarriedby SP grains(b) to the oxygen-isotope climaticrecordfromthe GreenlandGRIP ice core(c). Asterisksshowthe locationsoœ sampleswhosethermalremanencedecaycurvesare shownin FigureI. after warmingto 300 K; the remanenceunpinnednear 110 K ture. Note that this is a measure of absolute concentration of by the magnetocrystalline and structuraltransitionsof mag- SP particles,ratherthanthe proportionof ferrimagneticmatenetite;andthe continuous, quasi-exponential decayassociated rial in the SP state. The SP contentdiffersstronglyin 1oesses with thermalunblockingof the particlesthat are SP at room andpaleosols, withrespective means of2.0x 10-3Am2/kg and 3.9 x 10'3 Am2/kg. Themostimpressive feature in theSP temperature(Fig. 1). Oxidation of magnetite(maghemitization)suppresses the concentrationcurveis the largedrop (V4) in the centerof SlVerweytransition[Ozdemiret al., 1993]. The lossof c, where it falls nearly to the levels characteristicof the remanencenear 110 K is thus attributablemainly to near- 1oesses (Fig. 2b). The 1ow-SPinterval spansapproximately stoichiometricmagnetite. Maghemitemay contributeboth to 3.5 ka, with a centralage of ca. 123 ka. This featureis also the SP fractionthat unblockson warmingto 300 K and to the clearly visible in both volume- and mass-specificmagnetic stablefractionthat survivesat room temperature[Sun et al., susceptibilities (Fig. 2a). 1995]. For our purposes,it is not important how the SP A smaller decrease of shorter duration (V2) can be fraction is partitionedinto magnetiteand maghemitecontri- observedin the SP concentrationin the upper part of Sl-c butions;we assumethat SP particlesof both speciesresult (Fig. 2). This drop,thoughlessdramaticthan V4, represents from pedogenesis [Verosub,1994], andthereforethe total SP a significantchangein the pedogenicsignal. It is not seenin fraction representsthe signal of soil formation. We also the susceptibility, which exhibits a continuous broad assumethat enoughof the fine SP fractionsurvivesto pre- maximum over the same interval. The source of the enhanced susceptibilityhere is not yet understood;all threeof the lowservethis signal. temperatureremanencecomponentsare somewhatdiminished in V2 samples. The sharp minimum in SP concentration Summer monsoonchangessuggestedby SP arguesagainstthe conventionalpictureof pedogenicsuscepgrains tibility enhancementin this interval. The two d.ropsV2 and V4 divide the Sl-c recordinto three Figure 2 shows the stratigraphicvariation in SP grain abundance, in terms of the contribution made to the lowpeaks(P1, P3 and P5), two of which are characterizedby a temperatureSIRM by particlesthat are SP at room tempera- rapid initial increaseat the baseand a more gradualupward 2488 FANG ET AL.' MILLENNIAL-SCALE CLIMATE decline (Fig. 2c). Peak 5 is the most strikingof these.The threepeakshave durationsof about 1-3 ka, with centralages estimatedat ca. 115, 120 and 127 ka, respectively. These variationsin SP contentsuggestthat the summer monsoonduring 5e underwentseveral large changes:an enhancement at the transitionfrom the penultimateglaciation (MIS 6) to the lastinterglacialstage(MIS 5), with its warmest climateat about127 ka; a gradualweakeningof the summer monsoonand/ora temperature dropto a nearlyglaciallevel at about120 ka; and at leastonemoresimilarcycleof increase CHANGE ON THE LOESS PLATEAU GreenlandIce-coreProjectmembers,Climateinstabilityduringthe lastinterglacialperiodrecordedin theGRIP ice core,Nature,364, 203-207, 1993. Grimley,D.A., Follmer,L.R., and McKay, E.D., Magneticsusceptibility and mineralzonationscontrolledby provenence in 1oess alongthe IllinoisandcentralMississippi RiverValleys. Quaterna,rvResearch,49, 24-36, 1998. Grootes,P.M., M. Stuiver,J.W.C. White, S. Johnsenand J. Jouzel, Comparison of oxygenisotoperecordsfromtheGISP2andGRIP Greenlandice cores,Nature, 366, 552-554, 1993. Heller, F., and M.E. Evans, Loess magnetism, Reviews of Geophysics, 33, 211-240, 1995. andsubsequent decrease of monsoon leadingintosubstage 5d Heller, F., and T.-S. Liu, Magnetismof Chineseloess deposits, Geophys. J. R. Astr.Soc.,77, 125-141,1984. (Fig. 2). This indicatesthat the Asian summermonsoonhas Hunt,C.P., S.K. Banerjee,J.-M. Han, P.A. Solheid,E.A. Oches,W.an unstablenature, even on a millennial scale. The inferred W. Sun,and T.-S. Liu, Rock-magnetic proxiesof climatechange patternbears a strongresemblanceto the record of Eemian in the 1oess-paleosol sequences of the westernLoessPlateauof China,Geophysical JournalInternational,123,232-244,1995. climaticinstability(5el-5e5) in the GreenlandGRIP ice core [GRIP, 1993] (Fig. 2c), while the sharp drop of summer Kukla, G., J. F. McManus,D. D. Rousseauand I. Chuine,How long andhow stablewasthe lastinterglacial?Quat.Sci.Rev.. 16, 605monsoon in the middle of S 1 seems to correlate with so-called 612, 1997. mid-5e (drop) eventdocumented in the North Atlanticdeep Li, J. J., J.J.Zhu, J.C. Kuang,F. H. Chen,X. M. Fang,D. F. Mu, J.searecords[Maslin and Tzedakis, 1996;Fronvaland Jansen, X. Cao, L.Y. Tang, Y.T. Zhang,and B. T. Pan, Comparison of Lanzhouloesssectionof lastglacialepochwith AntarcticVostok 1996].Our resultssuggest fastclimaticchangeduringthe last ice core, Sci. China B, 35, 476-487, 1992. interglacial interval, and may indicate a teleconnection Liu, X.M., T. Rolph,J. Bloemendal,J. Shaw,T. S. Liu, Quantitative between the summer monsoon and the North Atlantic climate. estimatesof palaeoprecipitation at Xifeng, in the LoessPlateauof China. Palaeogeogr.,Palaeoclimat.,Palaeoecol.,113, 243-248, 1995. Acknowledgment: We gratefullyacknowledgehelp in initial well digging and samplingby Wang Jintai, Edward Derbyshire,Dai Xuerongandothers,andconstructive reviewsby JosephRosenbaum, NicolasThouvenyand an anonymousreviewer. This work was cosupportedby Ministry of Educationof China (grant for TransCentury Excellent Researchersand the Key Program), Visiting Fellowship Fund of IRM, the National Key Project for Basic Researchon Tibetan Plateau, the NSFC (No. 49871010), and the INQUA 1997 Project. The IRM is fundedby the Instruments and Facilities Program, Earth Sciences Division, National Science Foundation,and by the W. M. Keck Foundation. This is IRM contribution number 9904. Liu, T.S., Loessand the Environment.Beijing: China OceanPress, 251pp, 1985. Maher, B. A. and R. M. Taylor, Formationof ultrafine-grained magnetitein soils,Nature, 336, 368-370, 1988. Martinson,D.G., N.G. Pisias,J. D. Hays, J. Imbrie, Jr. T. C. Moore and N.J Shackleton,Age datingand the orbitaltheoryof the ice ages:developmentof a high-resolution0 to 300,000-yearchronostratigraphy, Quat. Res.,27, 1-29, 1987. Maslin,M. andC. Tzedakis,Sultrylastinterglacialgetssuddenchill: EOS, 77, 353-354, 1996. Oches,E.A. and S. K. Banerjee,Rock-magnetic proxiesof climate changefrom loess-paleosol sedimentsin the Czech Republic. Studiag.eophysica etgeodaetica, 40,287-300,1996. 6zdemir,O., D. J. Dunlop,andB. M. Moskowitz, The effectof References oxidationon the Verwey transitionin magnetite,Geophys.Res. Lett., 20, 1671-1674, 1993. Sun,W.-W., S.K. Banerjee,andC.P. Hunt,The role of maghemitein the enhancement of magneticsignalin the Chinese1oess-paleosol sequence:an extensiverock magneticstudy combinedwith 606, 1997. citrate-bicarbonate-dithionite treatment, Earth and Planetary Banerice, S. K., C. P. HuntandX.-M Liu.,Separation of localsignals An, Z. S. andS.C. Porter,Millennial-scale climaticoscillations duringthelastinterglaciation in centralChina,Geology,25 (7), 603- fromtheregionalpalcomonsoon recordof theChineseloessplateau'a rock-magnetic approach, Geophys. Res.Lett,20 (9), 843846, 1993. Burbank,D. W., andJ.-JLi, Age andpalaeoclimatic significance of the loessof Lanzhou,North China,Nature, 316, 429-431, 1985. Dansgaard, W., S. J. Johnsen, H. B. Clausen, D. Dahi-Jensen, N. S. Gundestrup, C. U. Hammer,C. S. Hvidberg,J.P. Steffensen, A. E. Sveinbjornsdottir, J. Jouzel,& G. Bond, Evidence for general instability of pastclimatefroma 250-kyrice-corerecord,Nature, ScienceLetters, 133, 495-505, 1995. Thouveny,N., J.L. de Beaulieu,E. Bonifay,K.M. Creer,J. Guiot,M. Icole, S. Johnsen,J. Jouzel, M. Reille, T. Williams and D. Williamson, Climate variationsin Europeover the past 140 kyr deducedfrom rock magnetism,Nature, 371,503-506, 1994. Verosub, K.L., P. Fine, M.J. Singer, and J. TenPas, Reply to "Commenton 'Pedogenesis and palcoclimate:interpretationof the magnetic susceptibilityrecord of Chinese1oess-paleosol sequences'" by B. A. MaherandR. Thompson, andby X.-M. Liu, J. B!oemendal,andT. Rolph,Geology,22, 859-860, 1994. 364, 218-220, 1993. Dunlop, D.J.,and•. (Szdemir, RockMagnetism.' Fundamentals and Verwey, E.J., Electronicconductionof magnetite(Fe304)and its transitionpointat low temperature, Nature,144, 327-328, 1939. Frontiers,573 pp., CambridgeUniversityPress,Cambridge, 1997. Evans,M. E. and F. Heller, Magneticenhancement and palaeoclimate:studyof a 1oess/palaeosol coupletacrosstheLoessPlateau of China,Geophys. J. Int., 117,257-264,1994. Fang,X.M., X.-R. Dai, J.-J.Li, J.-X. Cao,D.H. Guang,Y.P. Hao, J.L. Wangand J.M. Wang,Abruptness andinstability of Asian monsoon -- An examplefromsoilgenesis duringthelastinterglacial._Sci.ChinaB, 26(2), 154-160,1995. Fang,X.-M, J.-J.Li, R. Van derVoo, C.M. Niocai!l,X.-R. Dai, R. Kemp,E. Derbyshire, J.-X.Cao,J.-M.WangandG. Wang,A Recordof the Blakeeventduringthe lastinterglacial palcosolin the western Loess Plateau of China, Earth Planet. Sci. Lett., 146, 7382, 1997. Xiao-Min Fang and Li Ji-Jun, Departmentof Geography, Lanzhou University, Lanzhou, Gansu 730000 China (E-mail:fangxm•lzu.edu.cn) Subir K. Banericeand Mike Jackson,Institute for Rock Magnetism,Departmentof Geologyand Geophysics, Universityof Minnesota, Minneapolis, MN 55455 (E-mail: irm•geolab.geo.umn.edu) Eric A. Oches, Departmentof Geology, University of South Florida,Tampa,FL 33620-5201 Rob Van der Voo, Department of Geological Sciences,the Universityof Michigan,Ann Arbor,M148109-1063 Fronval,T. andE. Jansen, Rapidchanges in oceancirculation and heat flux in the Nordic seasduringthe last interglacialperiod, (ReceivedMarch9, 1999;revisedMay 24, 1999; Nature, 383,806-810, 1996. acceptedJune15, 1999)
© Copyright 2026 Paperzz