Angle and Radian Measure

Angle and Radian Measure
Circumference
Degrees to Radians
Multiply by
72°
πœ‹
180°
52.4°
More. . . .
120°
148°
Radians to Degrees
Multiply by
3πœ‹
18
180°
πœ‹
πœ‹
5
More. . .
πœ‹
4
1.4
Remember?
The side lengths of a 45-45-90 triangle are
always in the ratio:
45
90
45
More Remembering. . .
The side lengths of a 30-60-90 triangle are
always in the ratio:
30
90
60
Trig Ratios
Let πœƒ be an acute angle in the right βˆ†π΄π΅πΆ
A
πœƒ
C
B
π‘ π‘–π‘›πœƒ =
cscΞΈ =
π‘π‘œπ‘ πœƒ =
π‘ π‘’π‘πœƒ =
π‘‘π‘Žπ‘›πœƒ =
π‘π‘œπ‘‘πœƒ =
Find all six trig functions for an angle
of 60°
60
π‘ π‘–π‘›πœƒ =
cscΞΈ =
π‘π‘œπ‘ πœƒ =
π‘ π‘’π‘πœƒ =
π‘‘π‘Žπ‘›πœƒ =
π‘π‘œπ‘‘πœƒ =
Find all six trig ratios for the angle πœƒ
using the triangle below
10
π‘ π‘–π‘›πœƒ =
cscΞΈ =
π‘π‘œπ‘ πœƒ =
π‘ π‘’π‘πœƒ =
π‘‘π‘Žπ‘›πœƒ =
π‘π‘œπ‘‘πœƒ =
5
πœƒ
Using One Trig Ratio to Find Them All:
If we are given one of the trig ratios, we can use
that to find the other 5. Steps:
1. Sketch a triangle
2. Label two sides using the given ratio
3. Use the Pythagorean Theorem to find
missing side
4. Write the remaining 5 ratios
Find all trig ratios
3
π‘ π‘–π‘›πœƒ =
7
Another one. . .
3
π‘π‘œπ‘‘πœƒ =
4