Chimie verte (CHM–7013) Prof. Thierry Ollevier Stratégies vertes en synthèse • Choix de plusieurs voies synthétiques pour une même molécule • Réactions en cascade Réactions en un seul pot Réactions tandem (domino) • Synthèse convergente plutôt que linéaire Réactions multi-composantes • Réactions de condensation Économie d’atomes • Procédés catalytiques plutôt que stœchiométriques Organocatalyses plutôt que catalyse avec métaux lourds • Éviter groupes protecteurs • Réacteurs en boucle fermée (“Closed-loop systems”) Chimie verte (CHM–7013) Prof. Thierry Ollevier Chimie verte et pharma Reaction companies use now but would strongly use better reagents Research Area Amide formation avoiding poor atom economy •reagents • OH activation for nucleophilic substitution • Reduction of a mides without hydride reagents • Oxidation/Epoxidation methods without the use of chlorinated solvents • Safer and more environmentally Mitsunobu reactions • Friedel-Crafts reaction on unactivated systems • Nitrations Number of Roundtable companies voting for this research area as a priority research area 6 votes 5 votes 4 votes 4 votes 3 votes 2 votes 2 votes More apirational reactions Research Area • C-H activation of aromatics (X-couplings avoiding the preparation of haloaromatics) • Aldehyde or ketone + NH3+ “X” to give chiral amine • Asymetric hydrogenation of unfunctionalised olefins / enamines / imines • New greener fluorination methods • N-Centred chemistry avoiding azides, hydrazine etc. • Asymetric hydramination • Green sources of electrophilic nitrogen (not TsN3, nitroso or diimine • Asymetric hydrocyanation Number of Roundtable companies voting for this research area as a priority research area 6 votes 4 votes 4 votes 4 votes 3 votes 2 votes 2 votes 2 votes “Key Green Chemistry Research Areas – A Perspective from Pharmaceutical Manufacturers” Constable, D. J. C. et al., Green Chem. 2007, 9, 411–420 Chimie verte (CHM–7013) Prof. Thierry Ollevier Réactions en un seul pot • Révision d’une voie réactionnelle originelle d’un médicament Route comparison between the old and new commercial synthesis of Zoloft NMe + TiO2 + MeNH4Cl TiCl4 / MeNH2 Toluene / hexane THF O Pd/C, H2 (D)-mandelic acid THF EtOH Cl Cl Cl Cl racemic mixture cis and trans isomers 6 / 1 ratio (isolated as hydrochloric salt Cl Cl Cl (isolated) Sertraline Mandelate (isolated) NHMe NMe Cl NHMe NHMe NHMe Cl MeNH2 EtOH + H2O (D)-mandelic acid Pd / CaCO3, H2 EtOH EtOH Cl Cl Cl (not isolated) Cl Cl Cl racemic mixture cis and trans isomers 20 / 1 ratio ( not isolated ) Sertraline Mandelate (isolated) “A New and Simplified Process for Preparing Two Key Intermediates in the Synthesis of Sertraline Hydrochloride” Taber, G. P.; Pfisterer, D. M.; Colberg, J. C., Org. Proc. Res. Dev. 2004, 8, 385–388 Chimie verte (CHM–7013) Prof. Thierry Ollevier Réactions en un seul pot • Impact de l’utilisation de solvants Sertraline Hydrochloride First Commercial Route Sertraline Hydrochloride New Route EtOH EtOH EtAc THF Toluene Hexane Total 34 000 L 28 000 L 19 000 L 8 000 L 12 000 L EtAc EtOH THF toluene hexane EtAc EtOH EtAc 15 000 L 9 000 L Total 24 000 L 101 400 L Comparison of solvent utilization (solvents L/1000 kg of sertaline hydrochloride) between the first commercial route and the new route for Zoloft “A New and Simplified Process for Preparing Two Key Intermediates in the Synthesis of Sertraline Hydrochloride” Taber, G. P.; Pfisterer, D. M.; Colberg, J. C., Org. Proc. Res. Dev. 2004, 8, 385–388 Chimie verte (CHM–7013) Prof. Thierry Ollevier Économie d’atomes • Original article: “The Atom Economy – A Search for Synthetic Efficiency” Trost, B. M. Science 1991, 1471–1477 Hydrogenation: OH O CH3O + CH3O CHO H CH3 H ether, rt O catalyst CHO 3.0 LiClO4 + H2 O H CH3 100 % atom efficient CO2H Carbonylation: COOH OH + CO catalyst 72 % HO CO2H + N O TBDMS CH3CHO LiN(i-C3H7)2 THF, 0 oC 100 % atom efficient Hydroformylation: H CO2H CHO N O + CO/H2 TBDMS catalyst 100 % atom efficient 90 % Oxidation: O OH catalyst + O2 “A New and Simplified Process for Preparing Two Key Intermediates in the Synthesis of Sertraline Hydrochloride” Taber, G. P.; Pfisterer, D. M.; Colberg, J. C., Org. Proc. Res. Dev. 2004, 8, 385–388 + H2O 87 % atom efficient Chimie verte (CHM–7013) Prof. Thierry Ollevier Économie d’atomes • Synthèse de l’Ibuprofène (Procédé Boots) O CH3 H H3C O O CH3 AlCl3 H3C H O CH3 Cl CH3 H3C H OH CH3 H3C CH3 O H3O+ CH3 CH3 N H3C NaOC2H5 H3C CH3 CH3 COOC2H5 C N CO2C2H5 H3C H3C CH3 H O H H O H CH3 H3C ibuprofen “Origins, Current Status, and Future Challenges of Green Chemistry” Anastas, P. T.; Kirchhoff, M. M., Acc. Chem. Res. 2002, 35, 686–694 CH3 COOH O NH2OH Chimie verte (CHM–7013) Prof. Thierry Ollevier Économie d’atomes O H O O O EAt = 0.75 AlCl3 Chemical Formula: C10H14 Molecular Weight: 134 Chemical Formula: C4H6O3 Molecular Weight: 102.09 Chemical Formula: C4H7ClO2 Molecular Weight: 123 O Cl CO2CH2CH3 Chemical Formula: C2H5NaO Molecular Weight: 68 O O CO2Et NaOEt H EAt = 0.71 Chemical Formula: C16H22O3 Molecular Weight: 262 H H3O+ CO2Et O Chemical Formula: C12H16O Molecular Weight: 176 O+ Chemical Formula: H3 Molecular Weight: 19 Chemical Formula: C13H18O Molecular Weight: 190 H NH2OH Chemical Formula: H3NO Molecular Weight: 33 EAt = 0.68 O N OH Chemical Formula: C13H19NO Molecular Weight: 205 EAt = 0.92 Chimie verte (CHM–7013) Prof. Thierry Ollevier Économie d’atomes H N cat. N OH EAt = 0.91 Chemical Formula: C13H17N Molecular Weight: 187 OH 2 équiv. H2O N EAt = 0.92 O Chemical Formula: C13H18O2 Molecular Weight: 206 Globalement : H Chemical Formula: C10H14 Molecular Weight: 134 CO2H Chemical Formula: C13H18O2 Molecular Weight: 206 EAt = 206/(134+102+123+68+19+33+36) = 0.40 EAt = 0.40 Chimie verte (CHM–7013) Prof. Thierry Ollevier Économie d’atomes • Synthèse “verte” de l’Ibuprofène (Procédé BHC) H CH3 H3C CH3 O O HF O CH3 O CH3 CH3 H3C Raney nickel H2 CH3 CH3 CH3 H3C CO Pd CH3 CH3 H3C Ibuprofen COOH Chimie verte (CHM–7013) Prof. Thierry Ollevier Économie d’atomes O H O O O EAt = 0.75 HF Chemical Formula: C10H14 Molecular Weight: 134 Chemical Formula: C12H16O Molecular Weight: 176 O OH Ra Nickel EAt = 1 H2 Chemical Formula: C12H18O Molecular Weight: 178 Chemical Formula: C12H16O Molecular Weight: 176 OH CO2H CO EAt = 1 Pd Chemical Formula: C12H18O Molecular Weight: 178 Chemical Formula: C13H18O2 Molecular Weight: 206 Globalement : H CO2H Chemical Formula: C13H18O2 Molecular Weight: 206 Chemical Formula: C10H14 Molecular Weight: 134 EAt = 206/(134+102+2+28) = 0.78 EAt = 0.78 Chimie verte (CHM–7013) Prof. Thierry Ollevier Économie d’étapes • Nombre d’étapes O H 13 steps N Ni (0) cat 1-2 % 70 % H COT • Synthèses orientées vers la fonction (“FOS”) Synthèse d’analogues à fonctionnalités simplifiées Intérêt : s’orienter vers la fonction plus que vers la cible Activité biologique obtenue par remplacement par un squelette plus simple Squelette plus simple qui incorpore caractéristiques structurales nécessaires à l’acitivité “Function-Oriented Synthesis, Step Economy, and Drug Design” Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H., Acc. Chem. Res. 2008, 41, 40–49 Chimie verte (CHM–7013) Prof. Thierry Ollevier Économie d’étapes • Exemples de synthèses orientées vers la fonction (“FOS”) O OH O HN O OH O OMe OH O Function Oriented Synthesis RO N O OH OH H O O O H O Function Oriented Synthesis H O Artemisinin IC50 = 9.2 nM H Ar O O O OCH3 Simplified analog IC50 = 15 nM “Function-Oriented Synthesis, Step Economy, and Drug Design” Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H., Acc. Chem. Res. 2008, 41, 40–49 Chimie verte (CHM–7013) Prof. Thierry Ollevier Synthèse sans groupes protecteurs • Différentes approches de synthèse chimique. Synthèse de l’ambiguine H Proposed origin: Me Example: Me Me OH N C Me NR • function oriented • no protecting groups • enzyme needed to promote/control reactivity (PP = pyrophoshate) N H Me O N Me OPP Me PG Me H H Ambiguine H • target-oriented • protecting groups H Me N H (PG needed) • reactivity is “caged” until appropriate time N C Me Me • target-oriented • no protecting groups • no enzyme • natural reactivity of O Me N H PG PG Me X functionnal groups is used constructively “Total Synthesis of Marine Natural Products without using Protecting Groups” Baran, P. S.; Maimone, T. J.; Richter, J. M., Nature 2007, 446, 404–408
© Copyright 2025 Paperzz