QuizQuizTradeCardsforMath Grade5 Purpose:Togivestudentsanopportunitytoreviewmaterial,teachandexplainideas,usecritical vocabulary,andmoveabouttheclassroomworkingonsocialskills. Prepare:Useindexcardsorthetophalfofafullsheetofpapertocreateonequestionforeach studentinyourclass.Theanswershouldbeonthebackofthecardoronthebottomhalfofthesheet. Answersshouldbeclear,accurate,andstudentfriendly(showingallsteps,answerincorrectform…). Thequestionsshould: 1. Emphasize process over computation (How would you find…? Estimate the answer… explain error) 2. Include academic verbs: explain, show, identify, indicate, (shade, select, click, drag) express, solve, compute, calculate, evaluate, estimate, approximate, claim, reason, prove, interpret, evidence, critique, reasoning, justify… 3. Include math related vocabulary: pattern, variable, sum, difference, product, coordinates… 4. Ask students generally about the graphic: key information given, questions likely asked, related vocabulary… 5. Ask students to imagine or identify a common error or analyze a given type of error 6. Include multiple parts (often an easier part then a more difficult part) 7. Make students: generalize (What does area mean?); work backwards (Given the area, what is length?); use variables (find perimeter of square with side n inches long); ask “What if?” (what if it was hexagon); explain a pattern; explain why; explain more than one way to solve… 8. If the question uses an already formed test question from a state test, then pose a different question that goes beyond the given question (Why is answer choice C definitely wrong? What choices can you easily eliminate? Why is D tempting? Why is this problem tricky? What else could they have asked? Explain how you know you are correct…) 9. Make questions easy to read, not too long, not too open-ended (it’s hard to list all the possible solutions) 10. Include answer in a form that matches your expectations (formula is presented empty then filled in…) 11. Include an answer that might show two ways to solve the problem (one visual, one with a graph etc.) Remember,studentsarewalkingaroundandthinkingontheirfeet.Theywon’tbeabletodocomplex calculations.Askforestimations,approximations,howwouldyou,why,etc.(Whyis3÷¼=12?;Can youestimatethevolume,foraprismexplainwhytheformula:areaofbasetimesheightisthesameas (l)(w)(h)?Whatisthedifferenceinthesewordproblemsandhowarethenumbersentences different?(i.e.oneasksmissingtotalandoneasksformissingfactor…) ExplaintoStudents: “TodaywearegoingtouseQuizQuizTradeCards.Thesewillhelpyouto:explainyourideasbetter, reviewkeymaterial,practicegoingfromstrandtostrand,gettoknowyourclassmates,learnhowto study,getexercise,anddomentalmath,andteachothers.QuizQuizTradeCardsarelikeadvanced flashcards.Thereisaquestiononthefrontandtheanswerisontheback.Oftenthefronthasatwopartquestionoraquestionthatneedsanexplanation.QuizQuizTradeCardsworklikethis:(model thispartwithastudent) Whenyougetyourcardreviewbothsides.Onmysignal,standupandfindsomeonewhois lookingforapartner.BENICE!Findapartner,standshouldertoshoulder.Askyourquestion.If 1 yourpartnerdoesn’tknowtheanswergiveahint,anotherhint,thentellthem.HINT,HINT,TELL. (Ifyourpartnerisreallystrugglingyoucanskipthesecondpartofquestions.)Thenhavethe otherpersonaskyouhisorherquestion.Whenyouarefinished,tradecards.Thenheadout andlookforanotherperson.Youcanraiseyourhanduptoshowyouareavailable,sootherscan seeyou.Ifyougetthesamequestiontwice,justbeanexpertandansweritbetter.Threerules: Spreadout;keepyourvoicesdown;andbenice.(Youwillhavetositdownifyoudonotplaywell withothers). Passoutthecards.Afteraminute,allowthestudentstomoveaboutfor8-10minutesminglingwith others.Encouragethemtogettoasmanydifferentquestions/peopleastheycan.Tellstudentsthat it’sfineiftheyencounterthesamequestiontwice.Whenseeingacardforthesecondtimetheyshould beanexpertonthatquestion. Afterthetimeexpires,collectthecardsandhavestudentsreturntoseats.Askoneofthefollowing questionsforaquickwrite:(don’tforget:quotaplustimelimit…2minutes) 1. What was good about this activity? (Suggestions to make it better? Especially for 1st time) (write4linesormore.) 2. Draw and write about (list) as many cards as you can remember seeing. (Get at least 3) 3. List as many math words that you encountered. (List at least 5) 4. Describe one thing or more that you learned or reviewed. (write 3+ lines) 5. Describe one easy question and one harder question. (What was the hardest question you got?) (3 lines or more) 6. How good a teacher were you? (on a scale of 1-10) Explain your score. How could you be better? After: Studentswillnothaveseenallthecardsbutyoucanputupsomeofthecardswiththedocument cameraandsolvethemtogetherorhavestudentssolvethemordiscuss/reviewthem.Tellstudents, “WewilluseQuizQuizTradecardsfrequentlythisyear.Iwillbeaddingandretiringcardsaswe becomemoreskillful.InthefutureyouwillhaveopportunitiestomakecardsfornewQuizQuizTrade sessions.”TellthemtheymayseeaQuizQuizTradecardasashortquizinthedaysahead. DifferentiatedStrategies: 1.Showthecardstothestudentswhomightstrugglebeforehand.Letthempracticetheanswersso theyfeelmoreconfident. 2.Usewithafewernumberofcardsbyusingduplicatecards.Whenstudentsseeacardtheyhave alreadyseen,theyfeelmoreconfident.Therecanbebonusquestionstokeepitchallenging. 3.Considerplayingwithtwodifferentsetsofcardsthatarecolor-codedbydifficulty(i.e.greeneasier, blueharder).Tellstudentstodecidewhichlevelofchallengetheyareupfor.Theycanmoveupor downbasedonhowconfidenttheyarefeeling. 4.Eachcardcouldhaveabonusquestiononbottomforstudentswhowantmoreofachallenge. 5.Ifclassmanagementisaproblemconsiderputtingstudentsintotwolines,eachpersonfacinga partnerabout1meterapart.Makethequestionsshorterwithsimpleranswers.Then,havestudents 2 Quiz,Quiz,Trade.After1minute,ringabell.“Finishedornot,tradecards”(orkeepthesamecard). Onelineofstudentsmovesdownoneperson,soeveryonefacesanewpartner.Repeat. Thismethodeliminateswanderingstudentsanddowntime.However,it’simportanttotryandmake thecardshaveasimplepartandthenabonuspart.Maybebothstudentscangettothesimplepart,if thereistime,goontobonuspart. 6.StudentscanmakeaQuizQuizTradeCard. FocusAreas: a. Include 1-2 clear, solvable, easy to read question(s) b.Include1questionthat: 1. Asks why or explain 2. Asks “What if” questions… 3. Attacks common mistakes 4. Uses a variable or pattern 5. Makes one work backwards 6. Uses math and/or academic vocabulary (list should be provided) 7. Generalizes the problem by asking about what might be asked, what vocabulary is related, what mistakes should be avoided 8. Emphasizes process over answers: how would you find, estimate and explain… c.Answersareclear,accurate,andeasytoread 3 Q ExplainwhyBiscorrectandAisincorrect. A Biscorrectbecausethevalueofthesixin26.495is6 tens.Thevalueofthesixin17.64is6tenths. 6ones(wholeunits)is10timesgreaterthansix tenths. Inournumbersystemeachplacevaluepositionis tentimesmorethanthepositionontheright. Sointhisproblem,thevalueis10timesgreaternot 1/10asAincorrectlysuggests. 4 Q Thisshowshowtoenter anansweronone Standardizedtest. Whymightthisbe confusingforsome students? A Onthistest,youmustenternumbersfrom lefttoright. It’strickybecausetheonesplaceisusually thefarrightposition. 5 Q A.Howwouldyoufindthevolumeofthecerealbox? Explainyourthinking. B.Whywillthisbetrickyforsomestudents? A A. To find the volume of a box or prism, you find the area of the base (bottom layer). Then, you multiply by the height (number of layers). Forthisproblem,youaregiventheareaofthebase,so justmultiply160cm2x32cm. B. It’s tricky because some students think the only formula for the volume of a box V = (l) (w) (h) so they are looking for a third number to multiply. 6 Q Onthiscalculator,whichkeyswouldyoupresstoenterafraction? Whichkeydoyouusetoenteradecimal? Whichkeytodelete? A Deletekey Fractionkey Decimalkey 7 Q Explainhow youknowyou arecorrect. A Iknowthat(6,4)is6 unitsoverbecausethe firstnumberisthex coordinateandxisthe horizontalline(axis). XcomesbeforeY! Onememorytrickis:you mustwalkovertothe elevatorbeforegoingup. 8 Q 3 ⋅ 8 + 16 ÷ 4=? Bobsolvedthisproblembydoingthis: 3⋅8+16÷4=? 24+16÷4=? 40÷4=? 10=? WhatmistakeisBobmaking? Describethestepsneededsolvethisproblem. 3 ⋅ 8 + 16 ÷ 4=? A Bobisjustgoinglefttoright! Heneedstofollowtheorderofoperations! 1.Parenthesis(groupingsignals) 2.Exponents 3.MultiplicationandDivisionfromlefttoright 4.Additionandsubtractionfromlefttoright 3⋅(8+16)÷4=? 3⋅(24)÷4=? 72÷4=? 18=? 9 Q WhatmistakeisLenmaking? Howdoyouknowhisansweriswrong? Whatwouldbeabetteranswerorestimate? A 3/10+2/5=5/15 Lenthinkstoaddfractionsyoujustaddthenumeratorsand denominators. Thesum5/15makesnosensebecause2/5isalmosthalf.Ifyouadd 3/10itwouldbeover1/2.ThesumLengave,5/15,islessthan1/2! Tofindthesum,findequivalentfractionsthathavethesame denominator. 2/5=4/10Nowadd:3/10+4/10=7/10Thisanswermakessense! 10 Q A.Whatisthekeyinformationintheproblem? B.Whatkeyinformationdoyouneedtoknowaboutliquid measurementthat’snotgivenintheproblem? (Hint:gallons…ounces…) A A.Thekeyinformationfromtheproblemis: 1.Thetankholds5gallonsofwater 2.Tomfills6bottlesandapitchertotakewaterfromtank 3.Eachbottleholds16ounces 4.Thepitcherholds½gallon B.Whatyouneedtoknowisthatthereare128fluidouncesinagallon! (8ounces=cup;16ounces=pint;32ounces=quart64ounces=½gallon) 11 Q Tomhasawatertankthatholds5gallonsofwater. IfTomdrinks4pintsofwateraday,howmanyfull tanksofwaterwilldrinkin30days? A.TofindhowmanypintsTomdrinksin30days,what equationcouldyouuse? B.Whatequationcouldyouusetofindhowmany gallonsequals120pints?(Canyouuseabarmodel?) A A.4pints/eachdayx30days=120pints 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 B.8pints=1gallon(2pt.=1qt.4qt.=1gal.) 120pints 8 (1 ga ll 8 8 8 Howmany8’s(each8=1gallon)willittaketomake120?120÷8=40g. 12 Q Explainhowyouknowyouareright. 5.051 A 5.05 5.06 Theseare thousandths! 5.07 5.08 5.09 5.10 5.11 5.12 5.108 5.066 5.074 5.117 Whenroundingtothenearesthundredth,it’simportanttoknowhowmanythousandthsthere are.Thengotonearesthundredth!Seenumberline! A.5.066roundsto5.07(closerto5.07becausethereare6thousandths)CORRECT B.5.074roundsto5.07(closerto5.07becausethereareonly4thousandths) C.5.117roundsto5.12(closerto5.12becausethereare7thousandths) D.5.108roundsto5.11(closerto5.11becausethereare8thousandths)CORRECT 13 Q Whichiscorrect? Explainthedifferencebetweeneachexplanation. A Aiscorrect.Parallelogramshave2pairsofparallelsides! BisalmostthesameasAexceptitstatesparallelograms haveexactly1pairofparallelsides. Thisisthedefinitionofatrapezoidnotaparallelogram. 14 Q A.Whatdoyou thinkthis questionwillask? B.Whatequation couldyouuseto solve? A A.Itwillprobablyask,“Howmanytoyanimalsinacrate?” B.36inabagx48bagsinaboxx18boxesinacrate=total 36x48x18=t Or“Ifyouhave100,000toyanimals(orsomenumber)how manycrateswouldyouneed?” 100,000÷totalin1crate=n 15 Q Givetheequationyouwouldusetofindthevolumeof thisprism. Explainwhythisequationworks. A Theformulaforvolumeofaprismisareaofthebasexheight. Theareaofthisbaseis5x3(it’sarectangle) Theheightis2 (5x3)x2=30cubicunits Itworksbecauseyoumustfindthecubesonthebottomlayer: 5x3.Thereare2layerssomultiplythatnumberby2(theheight) 16 Q Whichansweris correct?Explainhow youknow. A 5ft Emmaiscuttinga5footboardinto6equalpieces.Sheis dividingitinto6equalparts. Thedenominatorofafractiontellsyouhowmanypartsyouare dividingsomethinginto. 5÷6means5/6 Also,ifshehad6feetofboardanddivideditinto6piecesthe pieceswouldbe1footeach.Inthiscasesheonlyhas5feetof board,sothepiecesaregoingtobealittlelessthan1footeach! 17 Q Bobthoughtallofthesecouldberectanglessohe choseA,B,CandD.Whyishewrong? A Bobisn’treadingthequestioncarefully.Itsays, “Whichfigureisalwaysarectangle.”Itdoesnotsay, whichfigurecouldbearectangle. Thesquaremusthaverightanglessoitistheonly shapethatisalwaysarectangle! Parallelogram (withoutrightangles) square ordinary quadrilateral Rhombus (withoutrightangles) 18 Q Explain your thinking. A Volumeisareaofthebasetimestheheight.(the numberonthebottomlayertimesthenumberof layers) Theareaofthebaseis4x5(countcarefully!) Theheightis3(3layersof20) Volumeis(4x5)x3=60cubicunits 19 Q * , Nickthinks ismorethan because: + 3ismorethan1and8ismorethan2. Correctthemistakeinhisreasoning. A ½ Nickisincorrectbecausealargedenominatordoesnotmakeafraction large.The8meansthefractionisdividedinto8equalpieces.The numeratortellsyouhowmanyofthose8piecesyouhave. Inthiscase3/8islessthanhalf.4/8=½3/8<1/2 20 Q Explainyour thinking. Usethedrawing tofindthe productof 4x2/3 A - - Cisthebestrepresents4x becauseitshows4groupsof * * 2 2 2 2 8 + + + = 3 3 3 3 3 + - * * Ifyouputthethirdstogether … =2 21 Q A.Whatistrickyaboutthisproblem? B.What2stepswillyouneedtotaketosolveit? A A.Whatistrickyaboutthisproblemistheunitsareinmeters,but theanswermustbeincentimeters! 1ststep:Findtheperimeterbyaddingupallthesidelengths 2ndstep:Convertmetersintocentimeterbymultiplyingby100 Eachmeter=100centimeters Youcandothestepsineitherorder! Remember2.57x100=257 22 Q Whatisthe orderedpair thatdescribes thelocationof pointA? Explain. A Theorderedpairis(2,7) Youknowthisiscorrectbecausethefirstcoordinatetells youtogoover2onthexaxis. Thesecondcoordinatetellsyoutogoup7ontheyaxis. 23 Q Whatequationcanyou usetodeterminethe heightofthewaterin thetank? Explainyourthinking. A Volume=(areaofthebase)⋅height Thevolumeisgiven=1050cubicinches Thelengthandwidtharegiven. length=30incheswidth=7inches 1050in3=(30in⋅7in)⋅hin 24 Q Whataresome numbersthat wouldmakethis inequalitytrue? A Youneedtomakeafraction thatislessthan1. 4x1=4soanyfraction lessthan1willbecreatea productlessthan4. Tomakeafractionless than1,makethenumerator smallerthanthe denominator… 1 1 1 2 3 4 , , , , , … 2 3 4 3 5 9 , 4x <4 - 25 Q Whataresome numbersthat wouldmakethis inequalitytrue? A Youneedtomakeafraction thatismorethan1. 4x1=4soanyfraction morethan1willbecreatea productmorethan4. Tomakeafractionmore than1,makethenumerator greaterthanthe denominator… 2 3 5 8 9 , , , , , … 1 2 3 4 5 6 3 4x >4 26 Q What mistakedid Bobmake? Explain. A Thesesides notparallel! Thesesides notequalin length Bob’smistakeisthatthetrapezoiddoesnothave bothsetsofoppositesidesparallel.Itonlyhasone setofoppositesidesparallel.Also,tobea parallelogram,bothoppositesideshavetobe equalinlength.Thisisnottrueoftrapezoids. 27 Q What2stepscanyoutaketofindthetotalmassoftheboxesonthetruck? Whatequationscanyouuse? A Thenumberofboxescanbefoundbyusingthevolumeformula. Volume=(areaofthebase)xheightv=5x4x4v=80boxes Then,multiplythenumberofboxesbythemassofonebox. Totalboxesx22.5=totalmass 80x22.5=totalmass 80x(20+2+.5)=totalmass(thisisthedistributiveproperty!) 1600+160+40=totalmass 1800=totalmass 28 Q Explainhowyouknow youhavethecorrect answers. A Areaofbasexh=volume lxwxh=volume 29 Marysaidtofindtheareajustmultiply , , , , 4x8=32and-x-=BFinalarea=32B Whatisthemistakeinherreasoning? A 8cm 1/2cm 32cm2 4cm ½cm 2cm2 A=32+4+2+¼ A=38¼cm2 ¼cm2 4cm2 Marydoesn’tunderstandhowtomultiplynumbers.Tomultiply sheneedstobreakthefractionsintotwopartsanduseanarea model.Orshecanchangethefractionsintoimpropernumbers. , ,C , D ,C D ,E* - - - - - - -B 8 = 4 = x = ,E* -B , =38 cm2 B 30 Q Whatnumbergoesinthe?spot.Explainhow theareamodelworks. A 4x60=240 Inthisareamodel,thedividend(theproduct…whatdividedby4=363?)isrepresented bytheinside(area).Onedivisor(factor)is4(thewidth)andtheotheris363(length). Now,youcanworkbackwards:363x4=?Thiswillfindthearea. Breaking363downinto300+60+3andmultiplyeachpartby4. The =240 31 Q What!keys!would!you!push!to!solve!this!problem?!! !! Why!is!this!tricky?! A (8x2)–4= (8x2)–4 Thinkcarefully!4yearslessthantwicehisage.Eventhoughit It’strickybecauseitsays“Olivia’sageis4yearslessthan seemslikeyoushouldsubtractfourfirst,youactuallyneedtodouble theagefirst!Youdon’tknowwhattosubtractfromuntilyoudouble twiceTyler’sage.”Youhavetomultiplyfirsttogethisage, theage! thensubtracttofindOlivia’sagewhichis4yearsless! 32 MakeaQuizQuizTradeCard FocusCorrectionAreas: 1.Include1-2clear,solvable, question(s) 3.Answersareclearandaccurate 4.Include1questionthat: a.Askswhyorexplain b.Asks“Whatif”question… c.Attackscommonmistakes d.Usesavariableorpattern e.Makesoneworkbackwards f.Usesmathvocabulary 33 Q A 34 Q A 35 Q A 36 Q A 37 Q A 38
© Copyright 2026 Paperzz