A Review of Contemporary Work Toward Asymmetric Additions to Imines Literature Presentation, December 9, 2003 Dave Ballweg Utility of Amines 1. Amines are ubiquitous in organic/medicinal chemistry 2. Important precursers to imines, amides, sulfonamides 3. Main component in amino acid synthesis 4. Useful in library construction 5. Nitrogen containing ligands in organometallic chemistry 6. Nitrogen bases provide important pKa range (32-37) 7. Additive for breaking lithium aggregates (TMEDA) Substrate Control vs. Catalyst Control Catalyst Control Substrate Contol N R1 R3 R2 Nucleophile HN R1 R3 N Nuc R2 R1 or R2 or R3 are stereogenic, and through steric interactions or Felkin models the stereochemistry of the product is controlled. Pros 1. Diastereomers are seperable 2. Diastereomers potentially easier to analyze 3. Auxiliary recycle is possible 4. More straight forward analysis Cons 1. Auxiliary waste/ removal difficulties 2. Stoichiometric chirality – cost R1 R3 R2 catalyst Nucleophile HN R1 R3 Nuc R2 R1, R2, R3 are not stereogenic, the chirality of the product is controlled by the catalyst. Pros 1. Small amount of chirality goes far (cost effective). 2. No auxiliary waste/removal dificulties 3. Still emerging field, offers more opportunities Cons 1. Cost – Effective catalyst system needed 2. Catalyst recovery 3. Catalyst turnover 4. Typically more complex mechanisms 5. Enantiomer seperation if not perfect selectivity 6. Potentially toxic metals Substrate Control vs. Catalyst Control Substrate control 1. Nitrogen substitution Catalyst control 3. Mannich reaction A. tert-butanesulfinyl A. zirconium catalyst B. carbon chelates B. palladium catalyst C. hydrazone addition C. copper catalyst 2. α–imine chirality 4. Strecker reaction A. Felkin-Ahn A. aluminium catalyst B. polar Felkin-Ahn B. library approach C. addition to ketoimine 5. Allylation via allyl tin/silicon 6. β–lactams N–tert–butanesulfinyl Imine O Me Me S Me 3 H N R1 R2MgBr Et2O/CH2Cl2 –48 oC R2 O Me Me S Me N H R1 HCl MeOH R2 HCl H2N 5 R1 6 Rationale RS S tBu N O M RL R2 Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984-995 N–tert–butanesulfinyl Imine O Me Me S Me 3 O R3 N R2M R1 Solvent Me Me S Me R3 N H R2 R1 6 Cogan, D. A.; Liu, G.; Ellman, J. A. Tetrahedron 1999, 55, 8883-8904 N–tert–butanesulfinyl Imine O Me Me S Me R1 N O R2 1. Me3Al, toluene 2. R3Li, –78 oC Me Me S Me R1 N H R3 R2 Rationale R1 S tBu N O Li AlMe3 R2 R3 Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984-995 N–tert–butanesulfinyl Imine O Me Me S Me 3 O H N Ph RMgBr, Toluene, –45 or RLi, THF, –78 oC, oC, 4h 4h Me Me S Me R N H 4 Ph MeOH/4M HCl 25 oC, 30 min NH2 HCl Ph R (R) or (S)-5 Plobeck, N.; Powell, D. Tetrahedron: Asymmetry 2002, 13, 303-310 N–tert–butanesulfinyl Imine O Me Me S H H N R2MgBr R1 Me R1 = 4-Cl-Ph R2 = Ph Me S Toluene tBu N O M R1 S Me R2 Cl R1 O Me N H R2 H NH2 (S) Chelating six-membered transition state model Predicted and observed absolute configurations R2Li THF R1 H R2Li O O R1 N H Me Me Me Me H R2 Cl N Me Me Non-chelating addition model Plobeck, N.; Powell, D. Tetrahedron: Asymmetry 2002, 13, 303-310 NH2 (R) N–tert–butanesulfinyl Imine O N R S H 4 O t-Bu Bu3SnLi THF, –78 oC HN S t-Bu SnBu3 R 5 Rationale (R) H S t-Bu O Li N R Sn Bu3 O t-Bu Kells, K. W.; Chong, J. M. Org. Lett. 2003, 5(22), 4215-4218 S SnBu3 N H R (S) Chiral Auxillary on Nitrogen H Me OMe R' Me OMe R'–Li R N Et2O, 0 oC, 5 h R N H Rationale R Ph Me Li O N H H CH3 blocks bottom face Hashimoto, Yukihiko; Kobayashi, Natsuko; Kai, Akiyoshi; Saigo, Kazuhiko. Synlett 1995, 9, 961-2. Chiral Auxillary on Nitrogen R MeO H R N Ph R'Li (5 eq.) Ph THF, –78 oC ~20–24 h R R' R' HN OMe HN OMe Ph Ph Ph Ph 4b 4a Entry R R' 1a Ph Me 2b Ph nBu Yield / % Rationale 4a:4bc 89 99:1 64 99:1 3 p-ClC6H4 Me 69 99:1 4 p-MeOC6H4 Me 60 94:6 5 PhCH=CH Me 43 98:2 6 iPr Ph 50 99:1 R' R H H N Li OMe H Ph Ph blocks bottom face aReaction temperature: r.t. bReaction temperature: –78 oC~r.t. cDetermined by GC. Hashimoto, Y.; Takaoki, K. Sudo, A.; Ogasawara, T.; Saigo, K. Chem. Lett. 1995, 235. Radical Addition to Aldehyde Hydrozones O N R1 O Lewis Acid, CH2Cl2/Ether N H CH2Ph O Bu3SnH, O2, Alkyl-I, BEt3 –78 oC to room temp. HN R1 O N R2 CH2Ph Using ZnCl2 as the Lewis Acid Stereochemical Rational H O O N LA H N Ph R1 Re Face Blocked Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2000, 122, 8329-8330 Asymmetric Imine Addition Through Felkin Control R = Pr, Me R2 = Alkyl or aryl R1 = SiR33, MOM, Bn OR1 OR1 H R2 NBn H R SiMe3 R R2 NHBn ZnBr 7 SiMe3 8 Polar Felkin–Ahn Model Nuc HH TBDMSO N Ph Bn proposed intermediate Me3Si Pr BrZn H H BnN c Gives four diastereoisomers Ph H OTBDMS Normant, J. F.; Poisson, J. J. Org. Chem. 2000, 65, 6553-6560 Substrate Control vs. Catalyst Control Substrate control 1. Nitrogen substitution Catalyst control 3. Mannich reaction A. tert-butanesulfinyl A. zirconium catalyst B. carbon chelates B. palladium catalyst C. Hydrazone addition C. copper catalyst 2. α–imine chirality 4. Strecker reaction A. Felkin-Ahn A. aluminium catalyst B. polar Felkin-Ahn B. library approach C. addition to ketoimine 5. Allylation via allyl tin/silicon 6. β–lactams Zr – Catalyzed Mannich Reaction OH HO OSiMe3 Me N R1 H OMe Zr catalyst, CH2Cl2 N–methylimidazole Me NH O R1 OMe Me Me 2a Zr(OtBu4) Br OH N OH L N Br Me Br Br O L O Zr O L Br O Catalyst Kobayashi, Shu.; Ueno, M.; Ishitani, H. J. Am. Chem. Soc. 2000, 122, 8180-8186. Br Proposed Catalytic Cycle Br OSiMe3 R3 HO Br N R1 R4 Br O H N O OH H Br O Zr O R1 R2 Br Br Br Br Br Br O O coordination change of catalyst O O Zr R4 L L O R1 R3 R2 Br Br O N O Zr O OH Br O Me3Si Br SiMe3 OH O NH O R1 OMe Me Me R4 R1 R3 R2 O N Br O Zr O OH Br O Kobayashi, Shu.; Ueno, M.; Ishitani, H. J. Am. Chem. Soc. 2000, 122, 8180-8186. Pd – Catalyzed Mannich Reactions OSiMe3 R PMP H PMP O r.t. N COOiPr Cat. R Catalyst HN COOiPr Ar Ar Ar P P O Pd Pd P O P Ar Ar Ar Ar Ar 2BF4– Ar = C6H5, C6H4–4–Me Possible Intermediate R P P N COOR1 Pd O R2 Sodeoka, M.; Fujii, A.; Hagiwara, E. J. Am. Chem. Soc. 1998, 120, 2474-2475 Cu – Catalyzed Mannich Reaction R3SiO H R O N EtO H 1b Ts 2 2-10 mol% 3 THF or CH2Cl2 –78 oC to 0 oC N Ts O O R OEt 4a-4f Catalyst R' P P R' R' MLn R' 3 3a R' = C6H5, MLn = AgSbF6 3b R' = C6H5, MLn = Pd(ClO4)2 3c R' = C6H5, MLn = CuClO4 3d R' = 4-MeC6H4, MLn = CuClO4 Ferraris, D.; Young, B.; Cox, C.; Dudding, T.; Drury, W. J., III; Ryzhkov, L.; Taggi, A. E.; Lectka, T. J. Am. Chem. Soc. 2002, 124, 67-77 Strecker Reaction Catalyzed by Chiral (Salen)Al(III) Complex N TMSCN Ph (1) Catalyst (5 mol%) Toluene, 23 oC, 15h (2) TFAA H N M t-Bu O t-Bu O t-Bu t-Bu F3C N Ph M N O CN ee % Conv. 1: M = H,H No Reaction 2: M = Ti(IV)Cl2 24 19 3: M = Cr(III)Cl 0 83 4: M = Mn(III)Cl 20 80 5: M = Ru(III)(NO)Cl 6 93 6: M = Co(II) 0 43 7: M = Co(III)OAc 6 65 8: M = Al(III)Cl 45 100 Jacobsen, E. N.; Sigman, M. S. J. Am. Chem. Soc. 1998, 120, 5315-5316 Strecker Reaction Catalyzed by Chiral (Salen)Al(III) Complex (1) 1.2 Equiv HCN Catalyst (5 mol%) Toluene, –70 oC, 15h N Ph Entry a b c d e f g h i Ph p-CH3OC6H4 p-CH3C6H4 p-ClC6H4 p-BrC6H4 1-napthyl 2-napthyl Cyclohexyl t-butyl 91 93 99 92 93 95 93(55)c 77 69 F3C (2) TFAA H %yielda R O Ph CN Catalyst %eeb 95 91 94 81 79 93 93(>99)c 57 37 N N N Al t-Bu O t-Bu Cl O t-Bu aIsolated yield. bAll ee's were determined by GC or HPLC chromatography using chiral columns. cAfter recrystallization from hexanes. Jacobsen, E. N.; Sigman, M. S. J. Am. Chem. Soc. 1998, 120, 5315-5316 t-Bu Schiff Base Catalyst for Asymmetric Strecker Reaction Library Approach Strecker Reaction O R1 H NaCN AcOH NH2R2 HN R1 R2 HN H R1 CN R2 CO2H Library 1 O Library Size: 12 Compounds N H R2 O H N 5 N H O R2 N H N TBSCN was used as the cyanide source Metal (M) HO Benzaldimine was used as the imine t-Bu M Ti Mn Fe Ru Co Cu Zn Gd Nd Yb Eu ee (%) 19 4 5 10 13 0 9 1 2 conv. (%) 59 30 61 69 63 68 55 91 95 3 0 5 84 94 34 Jacobsen, E. N.; Sigman, M. S. J. Am. Chem. Soc. 1998, 120, 4901-4902 t-Bu Schiff Base Catalyst for Asymmetric Strecker Reaction Library Approach Library 2 R1 O H N 5 N H Library Size: 48 Compounds O R2 O N H R2 N H Diamines N H2N Salicylaldehydes Amino Acids Leu D-Leu His Phenyl-G R3 CHO HO R3 R4 A B C D E F R4 tBu tBu tBu H t H Bu tBu OMe Br Br tBu NO 2 HO DP H2N R3 Ph Ph R4 H2N CH H2N Amino acid has signifigant effect on enantioselectivity. L-leucine-derived catalyst provided best results Diamine-derived catalyst effects the ee outcome Substituents on the salicylaldehyde derivatives play critical role, A, B, D afford highest yields Direct attachment of the amino acid group to the resin improved ee's Replacement of the urea linker with thiourea improved ee's Jacobsen, E. N.; Sigman, M. S. J. Am. Chem. Soc. 1998, 120, 4901-4902 Schiff Base Catalyst for Asymmetric Strecker Reaction Library Approach Library 3 R1 H N N H O Library Size: 132 Compounds Diamines R2 S H2N R2 N H N CP N H2N OH H2N R3 R4 CH H2N L-Amino Acids Salicylaldehydes Leu Nor (Nor-Leu) Ile Phenyl-Gly Met Cyclohex-Gly Phe t-Leu Val Tyr (OtBu) Thr (OtBu) CHO HO t-Bu X X = OMe H tBu Br H2N Ph DP H2N Ph Amino acid components found to be crucial, with bulkiest derivatives found to give highest ee's t-Leu proved best with CH, worst with CP – Highly beneficial to check all ligand possibilities t-Leu, diamine CH, X=OMe found to be catalyst, it was independently synthesized and tested Jacobsen, E. N.; Sigman, M. S. J. Am. Chem. Soc. 1998, 120, 4901-4902 Schiff Base Catalyst for Asymmetric Strecker Reaction Library Approach Catalyst N R H HCN (1) 24h, toluene, –78 2 mol% cat. (2) TFAA oC O F3C Ph N R t-Bu H N O S N H N H CN N HO t-Bu Jacobsen, E. N.; Sigman, M. S. J. Am. Chem. Soc. 1998, 120, 4901-4902 OMe Strecker Reaction if Ketoimines ScIII[(R)–BINOL]2 catalyst 10% mol. R1 N R2 Ph 1) HCN or TMSCN, toluene,–20 oC NC R1 H N Ph R2 Vallee, Y.; Chavant, P. Y.; Byrne, J. J.; Chavarot M. Tetrahedron:Asymmetry 1998, 9, 1147-1150 Strecker Reaction if Ketoimines R3 R1 R2 S N O N H N H N H HO t-Bu NC R3 N R1 OCOtBu R2 1 mol% catalyst, HCN, toluene, –78 oC R3 Jacobsen, E. N.; Vachal, P. J. Am. Chem. Soc. 2002, 124, 10012-10014 N H R2 R1 Strecker Reaction if Ketoimines O N R1 PPh2 R2 Gd(OiPr)3 (x mol%) Ligand ( 2x mol%) TMSCN (1.5 eq.) CH3CH2CN, –40 oC NC R1 H N R2 O P Ph2 Ligand Ph Ph P O O HO O F HO F Shibasaki, M.; Kanai, M.; Suzuki, M.; Usuda, H.; Masumoto, S. J. Am. Chem. Soc. 2003, 125, 5634-5635 Allylation Via Chiral Bis-π-allylpalladium Complexes R1 H SnBu3 N 1 R2 5 mol% cat. solvent, 0 oC R1 HN R2 2 a; R1 = Ph, R2 = Bn b; R1 = Ph, R2 = p –MeOC6H4CH2 c; R1 = Ph, R2 = Ph d; R1 = Ph, R2 = Pr e; R1 = p –MeOC6H4, R2 = Bn f; R1 = 2–naphtyl, R2 = Bn g; R1 = PhCH=CH, R2 = Bn h; R1 = c–Hex, R2 = Bn Catalyst 3e Me Cl Pd Pd Cl Me Yamamoto, Y.; Nakamura, K.; Nakamura, H. J. Am. Chem. Soc. 1998, 120, 4242-4243 Allylation Via Chiral Bis-π-allylpalladium Complexes Other Attempted Catalysts R PPh2 R Me PdCl2 Pd Pd Pd Me Pd Me Pd Me Cl R R R=H R = Me Very low ee's 39% yield 0% ee Me Cl Pd Cl Cl PPh2 Me Cl Cl Not effective R = H 63% yield 50% ee's Probable Transition-State Models Me Pd HN N Ph R (R) R H Bn Me R Pd N (S) Ph R HN Bn H Yamamoto, Y.; Nakamura, K.; Nakamura, H. J. Am. Chem. Soc. 1998, 120, 4242-4243 Allylation Via Chiral Bis-π-allylpalladium Complexes Proposed Catalytic Cycle 3e SnBu3 Bu3SnCl 1 2 Pd R1 Me N SnBu3 R2 CH2 R1 Pd N Me R2 H SnBu3 R1 Pd N R2 Me Yamamoto, Y.; Nakamura, K.; Nakamura, H. J. Am. Chem. Soc. 1998, 120, 4242-4243 Allylation Via Chiral Bis-π-allylpalladium Complexes R1 H N R2 SiBu3 5 mol% cat. solvent, r.t. R1 HN 50 mol% TBAF 1 a; R1 = Ph, R2 = Bn b; R1 = Ph, R2 = Ph c; R1 = Ph, R2 = p –MeOC6H4 d; R1 = Ph, R2 = n–Pr R2 2 e; R1 = p –MeOC6H4, R2 = Bn f; R1 = (E)-PhCH=CH, R2 = Bn g; R1 = Ph, R2 = p –MeOC6H4CH2 h; R1 = 2–Naphthyl, R2 = Bn Catalyst Me Cl Pd Pd Cl Me Yamamoto, Y.; Nakamura, K.; Nakamura, H. J. Am. Chem. Soc. 1998, 120, 4242-4243 β−Lactams OMe NMe2 NMe2 O Cl O BQ N BQ HCl R H N R O H Me2N Ts NMe2Cl O N Ts O O N BQ H H COOEt R EtOOC R benzoylquinine [BQ] One pot synthesis for generation of β-lactams Ketene generated in situ BQ found to be excellent "shuttle base" when added to acetyl chloride Strong base "proton sponge" found to liberate BQ BQ then acts as nucleophilic catalyst Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J., III; Lectka, T. J. Am. Chem. Soc. 2000, 122, 7831-7832 β−Lactams Transition state OMe N N O H O Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J., III; Lectka, T. J. Am. Chem. Soc. 2000, 122, 7831-7832 O Ph Summary 1. Substitution on the nitrogen controls stereochemistry through steric models. 2. Substitution on the α position controls stereochemistry through Felkin models. 3. Effective catalysts for asymmetric Mannich reactions have been developed. 4. High yields were obtained using metal catalysts for the Strecker reactions. 5. Non–metal catalyzed Strecker reactions developed using a library approach. 6. Useful allyl amines were synthesized from palladium catalysts. 7. β–lactams were synthesized using organic catalysts in high ee's. Possible Future Directions 1. The development of tethered reactions to form cyclic and bicyclic molecules. 2. The addition of silicon anions could prove synthetically useful through coupling reactions or conversion to alcohols. 3. The development of new chiral organic catalysts could replace toxic metal catalysts. 4. The formation of hemi–aminals from imines may novel synthetic route.
© Copyright 2026 Paperzz