Loyola Genomics Facility Michael J. Zilliox Loyola Genomics Facility • • • Loyola Genomics Facility (Google “Loyola Genomics”) genomics.luc.edu Research Channel in Loyola Wired Ion Torrent Personal Genome Machine 2 Illumina MiSeq Sequencers Gina Kuffel- Lab Manager • Funding: • • • • • • • P01- Nishimura R01- Le Poole R56- Brubaker P20- Wolfe RFC- Hutchens Astellas Kimberly-Clark • • • Collaborating Facilities • University of Chicago – Illumina microarrays – RNA-Seq • Notre Dame – RNA-Seq – Proteomics • Johns Hopkins – Affymetrix microarrays Protocols • • • Amplicon Sequencing – Variant analysis – 16S rRNA sequencing (microbiome, virome, fungiome) Whole Genome Sequencing – Bacterial genomes – Viral genomes Gene Expression Analysis – Affymetrix, Illumina bead arrays, Illumina RNA-Seq, NanoString, bacterial RNA-seq, – miRNA-seq Beyond Heatmaps Classic Gene Expression Analysis Classic Gene Expression Analysis Control Experimental Sample New Gene Expression Analysis Experimental Sample Control No Change New Gene Expression Analysis Experimental Sample Control No Change Why??? • • • • Determine the components of normal cells Discover genes missed due to variation Find genes that are potentially co-regulated Discover biomarkers/make clinical predictions Example 1- Naive, Normal Components Human Immune Cell Transcriptomes Cell Type Broadly Expressed N Genes ImmuneExpressed specific 3212 1319 0 CD8+ T cells 4 4510 68 CD4+ T cells 9 4083 37 B cells 4 5066 192 CD14+ monocytes 13 3652 42 Alveolar macrophages 11 4465 178 Human Naïve CD8+ T Cell 3 10 277 1453 400 138 61 263 222 149 263 15 16 1132 14 404 51 1. Nucleolus 5. Rough ER* 9. Mitochondrion 2. Nucleus 6. Golgi apparatus 10. Vacuole 3. Ribosome 7. Cytoskeleton 11. Cytosol 4. Vesicle 8. Smooth ER* 12. Lysosome *Rough ER and Smooth ER are combined 13. Centriole 14. Plasma membrane 15. Extracellular region 16. Unannotated Image from Wikimedia Commons: Authors MesserWoland and Szczepan1990 Proteome Comparison B Cells CD4 T Cells CD8 T Cells ● ● ● ● ● 10 −5 Unexpressed Unexpressed Expressed Expressed Barcode Value Barcode Value −10 −5 ● −10 ● 0 Proteomics Value 0 Proteomics Value 0 −5 −10 Proteomics Value 5 5 5 10 10 ● ● Unexpressed Expressed Barcode Value Example 2- Discover genes missed due to variation Finding Variable Genes 12 10 2 4 6 8 Log2 Fluorescence 10 8 6 4 2 Log2 Fluorescence 12 14 MAL2 14 CD82 Chromophobe Control (Dap) Oncocytoma Control (Dap) Chromophobe Control (Dap) Oncocytoma Control (Dap) Classic Analysis 321 Classic 781 547 Barcode Example 3- Find genes that are potentially co-regulated New Gene Expression Analysis Control Enhancer? Up-regulated Transcription Factor? No Change Experimental Sample Example 4- Discover Biomarkers Biomarker Discovery Normal Tumor Gene 1- Up-regulated 2 fold Gene 2- Off in whole cell/On in tumor Survival William Adams Models Hazard Ratio 95% CI Model 1 P value 0.01 Spectrin 4.29 1.60-11.51 0.004 CAND1 0.99 0.26-3.82 0.99 HNRDL 1.20 0.30-4.89 0.80 Stage III and IV (vs. I and II) 4.11 0.91-18.67 0.07 Spectrin 3.43 1.37-8.57 0.01 Model 2 Model 3 <0.001 ECE 4.08 1.62-10.26 0.003 Spectrin 4.57 1.85-11.29 0.001 William Adams Model 4 Spectrin 3.85 1.52-9.76 0.004 Stage III and IV (vs I and II) 2.71 0.55-13.30 0.22 ECE 3.23 1.24-8.40 0.02 Acknowledgements Loyola University Loyola Microbiome • • • • • • • • •Linda Brubaker •Alan Wolfe •Meghan Pearce •Krystal Thomas-White •Katherine Radek Gina Kuffel Michael Nishimura David Murray Jose Guevara-Patino Susan Zelisko Shiayin Yang William Adams Carol Bier-Laning Others MUSC • • • • • Chrystal Paulos Jake Bowers Shikhar Mehrotra Mark Rubinstein Elizabeth Garrett-Mayer • Rafael Irizarry • Matt McCall • Harris Jaffee Barcode website: Google “Gene Expression Barcode” barcode.luhs.org The End
© Copyright 2026 Paperzz