Practice with Limits Evaluate the following limits (1) lim (6x2 − 4x + 3) x4 − 81 x→3 x − 3 x→1 (8) lim x2 − 49 x→7 x − 7 (9) lim ((x2 − 2)2 + 6) (2) lim x→0 x2 − 6x + 8 x→2 x−2 (10) lim 2x2 + 9x − 5 x→−5 x+5 (11) lim x3 − 1 x→1 x − 1 (12) lim (3) lim x→0 5x x 17x x→0 2x (4) lim (5) lim x→0 −317x 422x −317x − 3 x→0 422x + 5 x2 − 4x + 3 (6) lim 2 x→3 x − 2x − 3 (13) lim x3 + 8 (7) lim x→−2 x + 2 (14) lim x→∞ 1 x+2 x−2 2x3 − 5x + 7 x→∞ 7x3 + 2x2 − 6 3x2 + 2x − 5 x→∞ 5x2 + 3x + 1 (17) lim x2 − 7x + 11 x→∞ 3x2 + 10 (18) lim (15) lim (3x − 1)(4x − 5) x→∞ (x + 6)(x − 3) (16) lim Show the following equalities are true: √ √ 3+x− 3 1 (1) lim = √ (hint: multiply the top and the bottom by the conjugate of x→0 x 2 3 √ √ √3 ) the numerator. So, multiply the expression by √3+x+ 3+x+ 3 √ √ x+h− x 1 (2) lim = √ h→0 h 2 x x 1 = (3) lim √ 2 x→∞ 2 4x + 1 − 1 (4) lim x→∞ √ n2 + 1 − n = 0 (hint: multiply by the fraction over the conjugate) 2 √ 2 √n +1+n . n2 +1+n This is the conjugate Consider the piecewise function 1 if x < −1 x2 2 if − 1 ≤ x < 1 3 if x = 1 f (x) = x+1 if 1 < x ≤ 2 −1 if x > 2 (x−2)2 First, sketch the graph of this function, then determine the following limits. 3 2 1 -2 -1 1 -1 -2 (1) lim f (x) = x→−1− (2) lim + f (x) = x→−1 (3) lim f (x) = x→−1 (4) lim− f (x) = x→1 (5) lim+ f (x) = x→1 (6) lim f (x) = x→1 (7) lim− f (x) = x→2 (8) lim+ f (x) = x→2 (9) lim f (x) = x→2 (10) lim f (x) = x→−3 (11) lim f (x) = x→5 (12) lim f (x) = x→1.5 3 2 3
© Copyright 2026 Paperzz