MATH 1500 Fall 2014 Quiz 3D Solutions Solve each of the following questions. Show all work. [8] 1. Suppose y is a function of x defined inplicitly by tan y + x2 y 3 = exy . Determine dy/dx. Solution: Taking derivatives of both sides gives d dy 2 dy 3 2 sec y = exy (xy) + 2xy + x 3y dx dx dx dy 3 2 xy 2 dy 2 dy + 2xy + x 3y =e ⇒ sec y y+x dx dx dx dy dy dy ⇒ sec2 y + 2xy 3 + x2 3y 2 = yexy + xexy dx dx dx 2 Moving all the dy/dx terms to one side, factoring and then dividing yields sec2 y dy ⇒ dx dy dy dy + 3x2 y 2 − x exy = yexy − 2xy 3 dx dx dx sec2 y + 3x2 y 2 − xexy ⇒ = yexy − 2xy 3 yexy − 2xy 3 dy = dx sec2 y + 3x2 y 2 − xexy [7] 2. Determine the derivative of f (x) = sin(x3 − 2) + e5x √ . Do not simplify. 3 x − csc x Solution: √ d √ − 2) + e5x )( 3 x − csc x) − dx ( 3 x − csc x)(sin(x3 − 2) + e5x ) √ f (x) = ( 3 x − csc x)2 √ 1 −2/3 2 3 5x 3 + csc x cot x (sin(x3 − 2) + e5x ) 3x cos(x − 2) + 5e ( x − csc x) − 3 x √ = ( 3 x − csc x)2 0 d (sin(x3 dx [5] 3. Evaluate tan 2x . x→0 sin 9x lim Solution: tan 2x sin 2x = lim x→0 sin 9x x→0 cos 2x sin 9x sin 2x 2x 2x = lim sin 9x x→0 9x cos 2x 9x sin 2x 2 2x = lim sin 9x x→0 9 cos 2x 9x 2(1) = 9(cos 0)(1) 2 = . 9 lim
© Copyright 2026 Paperzz