The Chain Rule As you work through the problems listed below, you should reference Chapter 2.2 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes. EXPECTED SKILLS: • Know how to use the chain rule to calculate derivatives of compositions of functions. PRACTICE PROBLEMS: For problems 1-16, calculate the derivative of the given function. 1. f (x) = (x3 + 4)−3 −9x2 (x3 + 4)−4 2. f (x) = (x2 + 2x)6 6(2x + 2)(x2 + 2x)5 3. f (x) = √ x3 − 2 3x2 √ 2 x3 − 2 1 4. f (x) = tan x2 1 −3 2 −2x sec x2 5. f (x) = sec 2x 2 sec (2x) tan (2x) 6. f (x) = cos3 3x −9 sin (3x) cos2 (3x) 4 1 7. f (x) = x − 2 x 3 1 2 5 4 4 x − 2 5x + 3 x x 5 1 8. f (x) = x2 − 3 (3x − 5)3 2x 9(x2 − 3) − ; (3x − 5)3 (3x − 5)4 Video Solution: http://www.youtube.com/watch?v=jOBz GYnNWY 9. f (x) = (x2 + 2x)5 (x2 − 4x)3 5(2x + 2)(x2 + 2x)4 (x2 − 4x)3 + 3(2x − 4)(x2 − 4x)2 (x2 + 2x)5 π 10. f (x) = sin x π −πx−2 cos x 11. f (x) = sin (sin 2x) 2 cos (sin 2x) cos 2x 12. f (x) = tan2 (x2 − 1) 4x tan (x2 − 1) sec2 (x2 − 1) 13. f (x) = (x5 2 + 4x3 − 4x)3 −6(5x4 + 12x2 − 4) (x5 + 4x3 − 4x)4 14. f (x) = x2 − 1 x2 + 1 3 12x(x2 − 1)2 (x2 + 1)4 15. y = 4x2 csc 5x 8x csc (5x) − 20x2 csc (5x) cot (5x) 16. y = tan (4 + x2 sin 3x) 3x2 cos 3x + 2x sin 3x sec2 4 + x2 sin 3x 2 17. Use the given table to calculate each of the following quantities: x f (x) f 0 (x) 1 −2 −5 5 −3 2 3 −1 6 4 3 1 5 4 7 g(x) g 0 (x) 3 9 4 −2 7 −6 −2 5 1 8 d [f (g(x))] (a) dx x=2 −2 (b) (f ◦ g)0 (1) 54 d (c) [f (3x)] dx x=1 18 π i d h √ g x (d) 2 sin dx 4 x=3 − 9π 4 (e) h0 (2) if h(x) = x2 f (g(x)) 4; Video Solution: http://www.youtube.com/watch?v=iJ9XL6xmnHI For problems 18-20, calculate d2 y . dx2 18. y = sin 3x −9 sin 3x 2 1 19. y = x 1 + x 2x−3 20. y = 1 1 − 2x 8 (1 − 2x)3 3 21. Suppose that f (x) is a twice differentiable function and define g(x) = x3 f (2x). Compute g 00 (x) in terms of f , f 0 , and f 00 g 00 (x) = 4x3 f 00 (2x) + 12x2 f 0 (2x) + 6xf (2x) 22. Let f (x) = (x2 5 . Compute an equation of the tangent line to the graph of f (x) + 1)3 at x = 0. y=5 23. Where does the tangent line to y = (5x + 7)3 at the point (−1, 8) cross the x-axis? x=− 17 15 24. Find all points on the graph of y = sin2 x where the tangent lines are parallel to the line y = x. π + πk where k is any integer 4 25. What is the 100th derivative of y = sin (2x)? 2100 sin 2x 1 26. Multiple Choice: The derivative of y = x cos is x 1 1 2 − x sin (a) 2x cos x x 2 1 (b) sin x x 1 (c) −2x sin x 1 1 (d) 2x cos + sin x x 1 (e) sin x 2 D 4
© Copyright 2026 Paperzz