2.4 - Convergence of the Newton Method and Modified Newton Method
Consider the problem of finding x ∗ , the solution of the equation: fx 0 for x in a, b . Assume that
′
f x is continuous and f x ≠ 0 for x in a, b .
′
1. Newton’s Method:
Suppose that x ∗ is a simple zero of fx. Then we know fx x − x ∗ Qx where
lim∗ Qx ≠ 0.
x→x
In Section 2.2, the Newton Method is introduced for solving fx 0. Recall
Algorithm Newton Method: newton.m
Given fx, x 0 in a, b and , for n 1, 2, . . . ,
(1) compute x n x n−1 −
fx n−1
′
f x n−1
;
(2) if x n − x n−1 or fx n , then the algorithm is terminated and
x ∗ ≈ x n ; otherwise goto Step (1).
Convergence and Rate of Convergence:
In this section, we study the convergence of Newton’s Method and will answer the following questions:
(i) Does the Newton Method converge for any given starting approximation x 0 ?
(ii) If Newton Method converges, what is the rate of convergence and what is the order of convergence?
(iii) Does the Newton Method still converge when fx has multiple zeros at x ∗ ? Note that in this case,
′
f x ∗ 0.
From Section 2.3, we know that the sequence of iterations x n n1 generated by Newton’s Method can
also be considered as iterations generated by the Fixed-Point Algorithm with function
fx
.
g newton x x − ′
f x
By the Fixed-Point Theorem, the sequence of iterations x n n1 converges to x ∗ if
g ′ x
≤ K 1 for all x in a, b
where x 0 in a, b , and the rate of convergence is OK n . We now investigate conditions on
fx under which the property g ′newton x 1 for x ∈ a, b is satisfied.
Observe that
′
g ′newton
x 1 −
′
′′
f xf x − fxf x
′
f x
′
2
′
′′
1−1
fxf x
′
f x
2
′′
fxf x
′
f x
′′
2
.
We know that f x ∗ 0. If f x ∗ ≠ 0, f x ≤ M 1 for all x in a, b and f x ≤ M 2 for all x
in a, b , then there exists an interval ā, b̄ ⊆ a, b such that
1
′′
fxf x
′
≤ K 1 and for x 0 in ā, b̄ , lim
x x∗.
n→ n
2
f x
Local Convergence Property of Newton’s Method:
′
′′
′
Theorem 1 Let f , f and f be continuous in a, b . If x ∗ is in a, b and f x ∗ ≠ 0, then there
exists a 0 such that x n generated by Newton’s method converges to x ∗ for any x 0 in
x ∗ − , x ∗ .
Note that:
a. Since the convergence of Newton method depends on , lim n→ x n x ∗ only locally.
′′
∗
n
b. By the Fixed-Point Theorem, x n x OK where
fxf x
′
f x
≤ K 1 for all x in
2
x ∗ − , x ∗ .
Example Determine if the iterations generated by Newton’s Method for solving x 2 − 2 0 converges.
′
fx x 2 − 2, f x 2x, f ′′ x 2. Consider a, b 1, 2.
′′
fxf x
′
g Newton x
y
′
f x
2
2x 2 − 2
2x 2
1 1 − 22
2
x
≤ g ′newton 1 1 K
2
0.5
0.4
(1) lim n→ x n
0.3
2 and
0.2
(2) x n
0.1
2 O0. 5 n
0.0
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
x
′
g Newton x
Example Approximate 2 by finding the solution of x 2 − 2 0 for x ≥ 0 within 10 −8 .
2
Let x 0 1. Then g1 1 − 1 − 2 3 . By the Fixed-Point Theorem, we can find an upper bound
2
21
N for the number of iterations needed:
ln10 −8 1 − 0. 5/ 32 − 1
26. 575 425
N
ln0. 5
Let N 27.
Use the MatLab program newton.m to find an approximation.
fun@(x) x.^2-2;
2
fpfun@(x) 2*x;
[xsol, flag, ct]newton(fun, fpfun,1,10^(-8),100)
xsol
1.00000000000000
1.50000000000000
1.41666666666667
1.41421568627451
1.41421356237469
flag 1
ct 5
Example Find an approximation of the solution of the equation x 3 x 1 0 for x in −1, 0 within
10 −5 .
(1) Compute x n by (a) Newton’s Method with x 0 −1, (b) the Bisection Method and (c) the
Fixed point Iteration with gx −1 and p 0 −1.
x2 1
(2) Compare numerical results to determine which algorithm has the best performance for
this problem.
(3) Can we reach algebraically the same conclusion?
3
′
(1) (a) Newton’s Method: fx x 3 x 1, f x 3x 2 1, x n x n−1 − x n−1 2 x n−1 1 .
3x n−1 1
fun@(x) x.^3x1;
fpfun@(x) 3*x.^21;
[xsol,flag,ct]newton(fun,fpfun,-1,10^(-5),100)
xsol
-1.00000000000000
-0.75000000000000
-0.68604651162791
-0.68233958259731
-0.68232780394651
flag 1
ct 5
(b) Bisection method:
bisect
the leftend point a -1
the rightend point b 0
epsilon 10^(-5)
the approximation to the solution - cN -0.68233489990234
function value at the solution - fcN -1.700736159326866e-005
number of iterations - Nit 17
3
(c) Fixed-point Algorithm:
fixpt
input initial point p0 -1
input the tolerance for stopping criterion, ex:.0001,10^(-8) 10^(-5)
input the maximum number of iterations 100
Algorithm converges with number of iterations 25
fixed point p -0.68232442571947
(2) Compare the numbers of approximations generate by all three algorithms:
algorithm
Newton Method Bisection Method Fixed-Point Iteration
Numerical of Approximations 5
17
25
The Newton Method has the best performance.
(3) (a) Newton Method:
3
′′
g newton x x − x 2 x 1 , f x 6x,
3x 1
x 3 x 16x graphically
g ′newton x
0. 8
3x 2 1 2
0.8
x n x ∗ O0. 8 n
0.4
0.6
x 0 −1, x 1 g newton −1 − 34
N
−5
ln10 1 − 0. 8/ −
ln0. 8
3
4
1
0.2
52. 59
Note that N 5 by the algorithm for 10 −5 .
0.0
-1.0
-0.8
-0.6
-0.4
′
g x
(b) Bisection Method:
x n x ∗ O 21n x ∗ O0. 5 n
ln1 − 0 − ln10 −5
16. 609 640 5, N 17
N
ln2
(c) Fixed-Point Iteration:
4
-0.2
0.0
x
y
Check the maximum value of |g ′ x| :
2x
g ′ x −
2
2
x 1
2|x|
≤ 0. 7 K
|g ′ x|
2
x 2 1
y=0.7
0.6
y
0.4
0.2
n
x n x ∗ O0. 7
ln 10 −5 ln1 − 0. 7
N
35. 654
ln0. 7
0.0
-1.0
Note that N 25 by the algorithm for 10 −5 .
-0.5
0.0
x
2|x|
2
x 1
Algebraically, we find the Bisection Method has the best performance so we cannot reach the same
conclusion as we have obtained from numerical results.
y |g ′ x|
2
Order of convergence:
Theorem 2 Modified Fixed Point Theorem:
Let p be a fixed point of gx. If g ′ p 0 and g ′′ p ≠ 0, then p n → p quadratically ( 2)
with an asymptotic error constant 1 |g ′′ p|.
2
′
′′
Proof: Assume that g p 0 but g p ≠ 0. By the Taylor Theorem, we have for x ≠ p,
g ′′ cx
g ′ p
gx gp
x − p
x − p 2 , where cx is between x and p.
1!
2!
Then for x p n ,
g ′′ cx n
g ′′ cp n
g ′ p
gp n gp
p n − p
p n − p 2 gp
p n − p 2
1!
2!
2!
where cp n−1 is between x and p n−1 .
g ′′ cp n−1
p n − p gp n−1 − gp gp
p n−1 − p 2 − gp 1 g ′′ cp n−1 p n−1 − p
2
2!
and
p n1 − p
1 g ′′ cp n 1 g ′′ lim cp n
lim
1 g ′′ p .
lim
2
n→
n→ 2
n→
2
2
pn − p
So, the order of convergence is 2 and the asymptotic error constant 1 |g ′′ p|.
2
Theorem 3 Let x n be generated by the Newton Method. If x ∗ is a simple zero of fx, then x n → x ∗
′′
quadratically with an asymptotic error constant
f x ∗
.
′
2f x ∗
′′
Proof: By the Modified Fixed-Point Theorem, we have g ′ x
5
fxf x
′
f x
2
. Then
2
′
g ′′ x
′′
f xf x fxf
x
′
2
′
4
f x
f x
′
′′′
′′
f xf x fxf
′′′
′
′
′
′′
∗
g x
f x ∗
′′
2
3
2
′′
f x ∗
′
f x ∗
the asymptotic error constant is 1 |g ′′ x ∗ |
2
′
f x − 2fx f x
x
f x
fx ∗ 0
′′
− fxf x 2f xf ′′ x
3
′′
f x ∗
′
f x ∗
,
′′
f x ∗
′
2f x ∗
.
2. Zero of Multiplicity m:
Definition A solution x ∗ of fx 0 is a zeros of multiplicity m of f if for x ≠ x ∗ , f can be expressed as
fx x − x ∗ m qx
where lim x→x ∗ qx ≠ 0.
Theorem 4 Let f be continuously differentiable on a, b . f has a simple zero at x ∗ in a, b if and
′
only if fx ∗ 0 but f x ∗ ≠ 0.
Proof Let f have a simple zero at x ∗ in a, b . By the definition, fx x − x ∗ qx where
lim x→x ∗ qx ≠ 0. Since
′
f ′ x qx x − x ∗ q ′ x, f x ∗ qx ∗ ≠ 0.
′
′
Now let f x ∗ ≠ 0. Since f x exists on a, b , for x ≠ x ∗ by the Taylor Theorem
′
f cx
′
fx fx
x − x ∗ f xx − x ∗ where cx is between x and x ∗ .
1!
Since
∗
′
′
′
lim f cx f x ∗ ≠ 0, qx f cx exists and qx ∗ ≠ 0.
x→x ∗
So, fx x − x ∗ qx where lim x→x ∗ qx ≠ 0.
Theorem 5 Let f have n continuous derivatives on a, b . f has a zero of multiplicity m at x ∗ if and
′
only if fx ∗ 0, f x ∗ 0, . . . , f m−1 x ∗ 0 but f m x ∗ ≠ 0.
Example Let fx e x − x − 1. f has a zero at x 0. Determine the multiplicity m of this zero.
Three ways to determine m.
′
′′
a. Use Theorem 5: find m such that f 0 f 0 . . . f m−1 0 0 but f m 0 ≠ 0. Check:
′
′
′′
′′
f x e x − 1, f 0 1 − 1 0. f x e x , f 0 1 ≠ 0. So, m 2.
b. Use the definition: find m such that fx x m qx where lim x→0 qx ≠ 0. That is
6
lim
x→0
fx
≠ 0.
xm
x
x
fx
lim x lim e − xx − 1 lim e − 1 0.
x→0
x→0
x→0
1
x
x
x
fx
lim 2 lim e − x2 − 1 lim e − 1 lim e 1 ≠ 0
x→0 x
x→0
x→0
x→0 2
2
2x
x
So, m 2.
c. Use the definition and Taylor series of fx.
lim
x→0
2
3
1 x x x . . .
2!
3!
xm
x
fx
lim e − xm − 1 lim
x
xm
x→0
x→0
2
3
x x . . .
3!
lim 2!
1 if m 2.
xm
x→0
2
−x−1
So, m 2.
Modified Newton’s Methods:
′
′
Let x ∗ be a zero of multiplicity 2 of f on a, b . Then we know f x ∗ 0. Though f x n ≠ 0, as
′
′
′
x n x ∗ , f x n → f x ∗ 0. So, f x n ≈ 0 for large n. In this case, does x n still converge to
x ∗ (theoretically)? If so, what is the order of convergence? Let
fx
.
gx x − ′
f x
To answer the first question, we need to find out if
lim∗ |g ′ x| 1.
x→x
Observe that
′
′
g x 1 −
f x
2
′′
− fxf x
′
f x
′′
′
lim g x lim∗
xx ∗
xx
fxf x
′
f x
2
L’Hopital
′
′
lim∗
xx
2
f x
′
0
0
2
′′
fxf x
′′
f xf x fxf
′
′′
2f xf x
′′′
x
′′′
fxf x
1 lim∗
2 xx 2f ′ xf ′′ x
′′′
f xf x fxf 4 x
1 1 lim∗
1 0 1 1
2
′′
′
′′′
2
2 xx
2
2
f x f xf x
So, x n still converges to x ∗ . However, since lim xx ∗ g ′ x 1 ≠ 0, x n → x ∗ linearly instead of
2
′
′′
′′′
quadratically. If f x ∗ 0, f x ∗ 0 but f x ∗ ≠ 0, then
7
′
′′′
f xf x fxf 4 x
lim∗ g x 1 1 lim∗
2
′′
′
′′′
x→x
2 xx
2
f x f xf x
′
′′
′′′
f xf x 2f ′ xf 4 x f xf 5 x
1 lim∗
′′
′′′
′
4
2 x→x
2 3f xf x f xf x
′′′
1 1 lim∗
2
2 x→x
′′
2
f x
3f ′′ xf 4 x 3f ′ xf 5 x f xf
′′′
3 f x
2
′′
4f xf
4
′
x f xf
5
6
x
x
1 1 2
2
3
23
′
′′
′′′
4
If f x ∗ 0, f x ∗ 0, f x ∗ 0 but f
′′′
f x
lim g ′ x 1 1 lim∗
x→x ∗
2
2 x→x
1 1 lim∗
2
2 x→x
2
′′
3f ′′ xf 4 x 3f ′ xf 5 x f xf
′′′
3 f x
2f
′′′
x ∗ ≠ 0, then
2
′′
4f xf
4
′
x f xf
5
6
x
x
xf 4 x3f ′′′ xf 4 x3f ′′ xf 5 xf ′′′ xf 6 x3f ′′ xf 5 x3f ′ xf 6 xf ′′ xf 7 x
′′′
6f
xf 4 x4f ′′′ xf 4 xf ′′ xf 5 x4f ′′ xf 5 xf ′ xf 6 x
′′′
′′′
′′
6
5f xf 4 x 6f ′′ xf 5 x f xf x 3f ′ xf 6 x f xf
1 1 lim∗
′′′
′′
′
5
6
2
2 x→x
10f xf 4 x 5f xf x f xf x
2
′′
x
′′′
5f 4 x 5f xf 5 x . . .
1
1
lim∗
1 1
2
2 x→x 10f 4 x 2 10f ′′′ xf 5 x . . .
2
2
′
7
Theorem If f x ∗ 0, f x ∗ 0, … , f
m
1
2
3
4
m1
x ∗ 0 but f
x ∗ ≠ 0, then
1.
lim g ′ x m m
x→x ∗
Example Consider solving the equation: lnx 1 − x 0 using Newton’s Method with x 0 1.
1.
8
fun@(x) log(x1)-x;
fpfun@(x) 1./(x1)-1;
[xsol,flag,ct]newton(fun,fpfun,1,10^(-5),100)
xsol
0.5
0.48
1.00000000000000
0.38629436111989
0.46
0.17219218899218
0.44
0.08154040269002
0.03970514407998
0.42
0.01959491748522
0.4
0.00973408497441
0.00485132683348
0.38
1
0.00242175034192
2
3
4
flag 1
y
ct 9
5
6
7
8
x n1 −x ∗
x n −x ∗
orderconv(xsol,0,9,1)
′
1 − 1 0 when x 0 and f ′′ x −
1
≠0
1x
1 x 2
when x 0, x 0 is a zero of multiplicity 2 of f. Can we improve the convergence of Newton’s
Method for the problems where m 1?
Clearly, x n → 0 linearly. Since f x
Modified Newton’s Methods: newtonM.m
fx
(1) x n x n−1 − m ′ n−1
f x n−1
x n−1
fx
(2) x n x n−1 −
where x ′
.
′
x n−1
f x
Let x ∗ be a solution of fx 0. For each method, we will check if
(a) x n → x ∗ ; and
(b) x n → x ∗ quadratically.
′
′′
Let us just check out the case where m 2. By the definition, f x ∗ 0 but f x ∗ ≠ 0.
fx
fx
, and g Newton x x − ′
. Then
(1) Let gx x − 2 ′
f x
f x
gx x − m
fx
′
f x
x2 x−
fx
′
f x
−x
x 2g Newton x − 2x 2g Newton x − x.
gx ∗ 2g Newton x ∗ − x ∗ 2x ∗ − x ∗ x ∗ .
So, x ∗ is a fixed point of gx. Since
9
g ′ x d 2g Newton x − x
dx
2g ′Newton x − 1
g ′ x ∗ 2g ′Newton x ∗ − 1 2 1 − 1 0,
2
x n converges to x ∗ and converges to x ∗ quadratically.
(2) This method can also be considered as solving x 0 using Newton’s Method where has a
simple zero at x ∗ .
fx
∗
x lim
x lim
x→p
x→p
x d
dx
′
′
f x
L’Hopital
′
fx
2
f x
′
f x
′
0
0
′
f x
lim
x→p
′′
f x
′
2
x→x
′
0
0
L’Hopital
′
1−
′
′
2
f x
fxf x
′
x→x
′′′
2
f x
x
′′
2f xf x
′
1 lim∗
x→x
2
′′
x→x
1− 1
2
1 − lim∗
f xf x fxf
1 − lim∗
fxf x
′′
fxf x
f x
0
′′
′′
x→x
′′
f x ∗
′′
− fxf x
f x
′ x ∗ lim∗ ′ x lim∗ 1 −
f x ∗
′′
f xf x fxf
′′
f x
2
′
f xf
′′′
x
′′′
x
1 −0 1 ≠ 0
2
2
Since ′ x ∗ ≠ 0, has a simple zero at x ∗ and x n → x ∗ quadratically.
Example Consider solving the equation: lnx 1 − x 0 using both modified Newton’s Methods with
x 0 1.
fun@(x) log(x1)-x;
fpfun@(x) 1./(x1)-1;
0.38
[xsol,flag,ct]newtonM(fun,fpfun,1,10^(-5),100,2)
xsol
0.36
0.34
1.00000000000000
(1)
0.32
-0.22741127776022
0.3
-0.01951471341458
0.28
-0.00012819465259
0.26
flag 1
0.24
ct 4
0.22
1
orderconv(xsol,0,4,2)
1.2
1.4
1.6
1.8
y
(2) fx lnx 1 − x,
′
f x
10
1 − 1 1 − x − 1 −x
x1
x1
x1
2
2.2
x n1 −x ∗
x n −x ∗
2
2.4
2.6
2.8
3
and
′′
1
f x − x 1 − 2x −
.
x 1 2
x 1
Define
x
fx
′
f x
lnx 1 − x
lnx 1 − xx 1
−
−x
x
x1
and
′′
′ x 1 −
fxf x
′
f x
2
1−
′
′
f x
1
lnx 1 − xx 1
x
1
lnx 1 − x
x2
fun@(x) -(log(x1)-x).*(x1)./x;
f ′′ x
fx
f x
−
x1
−x
1
x 1 2
0.35
fpfun@(x) 1(log(x1)-x).*(x1)./x.^2;
[xsol,flag,ct]newton(fun,fpfun,1,10^(-5),100)
xsol
0.3
0.25
1.00000000000000
0.11460991822207
0.2
0.00366562036799
0.15
0.00000445171110
flag 1
ct 4
orderconv(xsol,0,4,2)
0.1
1
1.2
1.4
1.6
1.8
y
2
x n1
2.2
2.4
2.6
2.8
−x ∗
x n −x ∗
2
Example Use the Newton Method to solve fx e 3x − 27x 6 27x 4 e x − 9x 2 e 2x for x in 3, 5.
Determine the multiplicity of the zero of fx.
fx e 3x − 27x 6 27x 4 e x − 9x 2 e 2x
′
f x 3e 3x − 162x 5 274x 3 e x x 4 e x − 92xe 2x 2x 2 e 2x
3e 3x − 162x 5 27x 3 4 xe x − 18x1 xe 2x
fun@(x) exp(3*x)-27*x.^627*x.^4.*exp(x)-9*x.^2.*exp(2*x);
fpfun@(x) 3*exp(3*x)-162*x.^527*x.^3*(4x).*exp(x)-18*x.*(1x).*exp(2*x);
[xsol,flag,ct]newton(fun,fpfun,3,10^(-8),200)
ct24
xsol(ct)3.73315956142332
for k1:ct-2;
r1(k)abs(xsol(k1)-xsol(ct))/abs(xsol(k)-xsol(ct));
end
plot(r1)
11
3
title(’|x_{n1}-x*|/x_n-x*|’)
for k1:ct-2;
r2(k)abs(xsol(k1)-xsol(ct))/(abs(xsol(k)-xsol(ct)))^2;
end
plot(r2)
title(’|x_{n1}-x*|/x_n-x*|^2’)
|x
|x
-x*|/|x -x*|
k+1
0.75
4000
0.7
3500
0.65
3000
0.6
2500
0.55
2000
0.5
1500
0.45
1000
0.4
0.35
0
k
500
5
10
15
20
25
0
0
So, the Newton Method converges linearly and m 1.
Now let m 2 and use the Modified Newton Method:
[xsol,flag,ct]newtonM(fun,fpfun,3,10^(-8),200,2);
ct14
xsol(14)3.733124800815943
for k1:ct-2;
r3(k)abs(xsol(k1)-xsol(ct))/abs(xsol(k)-xsol(ct));
end
subplot(1,2,1),plot(r3)
title(’|x_{n1}-x*|/x_n-x*|’)
for k1:ct-2;
r4(k)abs(xsol(k1)-xsol(ct))/(abs(xsol(k)-xsol(ct)))^2;
end
subplot(1,2,2),plot(r4)
title(’|x_{n1}-x*|/x_n-x*|^2’)
12
2
-x*|/|x -x*|
k+1
k
5
10
15
20
25
|x
n+1
-x*|/x -x*|
|x
n
2.2
n+1
-x*|/x -x*|
2
n
700
2
600
1.8
500
1.6
1.4
400
1.2
300
1
0.8
200
0.6
100
0.4
0.2
0
5
10
15
0
0
5
So, the Modified Newton Method converges linearly with m 2.
Now let m 3 and use the Modified Newton Method again:
[xsol,flag,ct]newtonM(fun,fpfun,3,10^(-8),200,3);
ct9
xsol(9) 3.733078834748490
for k1:ct-2;
r5(k)abs(xsol(k1)-xsol(ct))/abs(xsol(k)-xsol(ct));
end
subplot(1,2,1),plot(r5)
title(’|x_{n1}-x*|/x_n-x*|’)
for k1:ct-2;
r6(k)abs(xsol(k1)-xsol(ct))/(abs(xsol(k)-xsol(ct)))^2;
end
subplot(1,2,2),plot(r6)
title(’|x_{n1}-x*|/x_n-x*|^2’)
13
10
15
|x
n+1
-x*|/x -x*|
|x
n
4
n+1
-x*|/x -x*|
2
n
5
4.5
3.5
4
3
3.5
2.5
3
2
2.5
2
1.5
1.5
1
1
0.5
0
0.5
0
2
4
6
8
0
0
2
4
6
Hence, the Modified Newton Method convergence quadratically and m 3.
14
8
Exercises:
1. Consider solving the equation cosx − x 0 for x in 0, .
2
(1) Compare numerical results you generated in Problem 4 of Section 2.3 to determine which algorithm
among the Newton Method, the Bisection Method and the Fixed-Point Iteration has the best performance
for this problem.
(2) What can we say algebraically about the performances of these three methods for this problem?
Show your work in detail to support your answer.
2. Let fx 27x 4 162x 3 − 180x 2 62x − 7.
(1) Show first that fx has a zero of multiplicity 3 at x 1 .
3
(2) Use Newton Method to solve this equation with x 0 0 within 10 −8 .
|x n1 − x ∗ |
|x n1 − x ∗ |
(3) Verify using the graphs of the sequences
and
that the iterations
∗
|x n − x |
|x n − x ∗ | 2
obtained in (2) converge linearly. Estimate the asymptotic error constant.
(4) Choose one modified Newton Method to solve this equation with x 0 0 within 10 −8 .
|x n1 − x ∗ |
|x n1 − x ∗ |
(5) Verify using the graphs of the sequences
and
that the iterations
∗
|x n − x |
|x n − x ∗ | 2
obtained in (4) converge quadratically.
3. Let fx x1 − cosx.
(1) Show first that fx has a zero of multiplicity 3 at x 0.
(2) Use Newton Method to solve this equation with x 0 1 within 10 −8 .
|x n1 − x ∗ |
|x n1 − x ∗ |
(3) Verify using the graphs of the sequences
and
that the iterations
|x n − x ∗ |
|x n − x ∗ | 2
obtained in (2) converge linearly. Estimate the asymptotic error constant.
(4) Choose one modified Newton Method to solve this equation with x 0 0 within 10 −8 .
|x n1 − x ∗ |
|x n1 − x ∗ |
(5) Verify using the graphs of the sequences
and
that the iterations
|x n − x ∗ |
|x n − x ∗ | 2
obtained in (4) converge quadratically.
4. Let fx 1 1 x 2 − x sinx − 12 cos2x.
2
4
a. Verify that x 0 is a zero of fx. Find the multiplicity m of the zero x 0.
b. Use Newton Method to find the zero x 0 of fx within 10 −10 with x 0 −0. 5. Use a proper
Modified Newton Method to find the zero x 0 (quadratically) within 10 −10 with x 0 −0. 5.
c. Use Newton Method to find another zero of fx within 10 −10 with x 0 3. What is the
zero? Estimate the order of convergence and asymptotic error constant . Is this zero simple? If
not, find a proper Modified Newton Method to find this zero (quadratically) within 10 −10 with
x 0 3. What is the multiplicity of this zero?
5. The sum of two real numbers is 20. If each number is added to its square root, the product of the two
sums is 155.55. Determine the two numbers to within 10 −8 by the Newton Method.
15
© Copyright 2026 Paperzz