Welcome SamplePreparationBasics SamplePreparationBasics Discussiontopicswillinclude: • • • • • DefinitionsandObjectivesofaSamplePreparationforICPmeasurement ChemicalCompatibility SelectingaSamplePreparationApproach ContainerMaterialProperties ClassicSamplePreparationChemistry— ashing,aciddigestion,fusion SamplePreparationBasics Definitions SamplePreparation(forICPapplicationsforthepurposesofthispresentationisdefinedas) theconversionofasolidorliquidintoaliquidthatissuitableforICPMeasurements withapneumatic nebulization(concentricorcross-flow)/spraychamber (ScottorCyclonic)introductionsystem. SampleSolution– Aliquidformofthesample.Thepreferenceishavingtheanalytes inanionicsolvatedformorobservingthattheanalyteswillpassthrua0.3micron filter.Thismayormaynotinvolveachemicalattack. StandardSolution– Aliquidformofthecalibrationandqualitycontrolstandards MatrixMatching– TheabilitytomatchtheSampleSolutiontotheStandardSolution suchthatallnebulizerandplasmarelatedeffectsareeliminatedorcanbecorrected. SamplePreparationBasics— Objectives SamplePreparation(forICPapplicationsforthepurposesofthispresentationisdefinedas) theconversionofasolidorliquidintoaliquidthatissuitableforICPMeasurements withapneumatic nebulization(concentricorcross-flow)/spraychamber (ScottorCyclonic)introductionsystem. Objectives •Conversionofsampletoasolution— samplewillpassthrua0.3micronfilter •Eliminatesamplelosses– volatilization,adsorption,precipitation,mechanicalloss •Eliminatecontamination– fromreagents,apparatus,environment,analyst, container SamplePreparationBasics— Objectives SamplePreparation(forICPapplicationsforthepurposesofthispresentationisdefinedas) theconversionofasolidorliquidintoaliquidthatissuitableforICPMeasurements withapneumatic nebulization(concentricorcross-flow)/spraychamber (ScottorCyclonic)introductionsystem. ObjectivesContinued • Eliminateoraccountfornebulizerrelatederrors • Eliminateoraccountforplasmarelatederrors • Theoverallobjectiveiseliminationorminimizationofsystematicerrorswhile convertingthesampletoaliquidformthatiscompatible withcommonICP introductionsystems,otherelements,apparatus,etc. ElementandMatrixCompatibility • Compatibilitybetweenelementsandthematrixwhenmakingblendsof elementsi.e.eliminatingprecipitation,adsorption,volatility • Compatibilitywiththeintroductionsystem • Compatibilitywithlaboratoryapparatususedinpreparationandholding ofsampleandfinalsamplesolution • Compatibilitywiththeanalyst— safety,contamination ElementandMatrixCompatibility— Grouping 1. Alkalis:Group1— Li,Na,K,Rb,andCs;likeHCl,HF,HNO3, H2SO4 andwater 2. AlkalineandRareEarth:Groups2and3— Be,Mg,Ca,Sr,Ba,Sc,Y,La,Ce,Pr, Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,ThandU;LikeHCl andHNO3 butavoid HF andH2SO4 3. HF Elements:Ti,Zr,Hf,Nb,Ta,Mo,W,Si,Ge,Sn,Sb,Te 4. HCl Elements:Ru,Os,Rh,Ir,Pd,Pt,Au 5. HNO3 Elements:V,Cr,Mn,Re,Fe,Co,Ni,Cu,Ag,Zn,Cd,Hg,B,Al,Ga,InTl,Pb, As,Bi,Se 6. Non-Metals:C,P,S,F,Cl,Br,I;chemicalformcriticaltocompatibility FactorsThatInfluenceMEBPreparation • MicrowavedigestionmethodologystronglyinfluencesMEBmatriceswhere HNO3 ,HCl,andHFaremostcommon • The#1matrixacidisHNO3 withHCl being2nd • HF istypicallyallowedandisalwaysmixedwithHNO3 orHCl at low%totrace(<0.1%)levels • H2SO4 isstillusedbutislesscommon • Analystsrequireone workingsolution— multipleconcentratesare allowedonlyiftheycanbemixedatworkinglevels • Solutionstabilityisamust ElementandMatrixCompatibility— NitricAcid F denotesthattheelementcanbedilutedinHNO3 ifcomplexedwithF-. Cl denotesthattheelementcanbedilutedinHNO3ifcomplexedwithCl-. HF denotesthattheelementshouldhaveexcessHFpresentwhendilutedwithHNO3. T denotesthatthetartaricacidcomplexcanbedilutedinHNO3. 1. 2. 3. 4. 5. 6. OsshouldneverbemixedwithHNO3 duetotheformationoftheveryvolatileOsO4. ClisoxidizedtomolecularCl2 whichisvolatileandadsorbsonplastic. BrandIareoxidizedtomolecularBr2 andI2 whichadsorbontoplastic DilutionsofHgandAuinHNO3 below100ppmshouldbestoredinborosilicateglassduetoHg+2 adsorptiononplastic. Notsolubleaboveconcentrationsof1000µg/mL. TracelevelsofHClorCl- willformAgC,whichwillphotoreducetoAg0. ElementandMatrixCompatibility— HCl F denotesthattheelementismorestabletohydrolysisifcomplexedwithF. 1. Concentrated(35%)HClwillkeepupto100µg/mLofAg+ insolutionastheAg(Cl)X-(X-1) complex.Formoredilutesolutions,theHClcanbeloweredsuchthat 10%HClwillkeepupto10µg/mLAginsolution. NOTE: TheAg(Cl)X-(X-1) complexisphotosensitive andwillreducetoAg0 whenexposedtolight.HNO3 solutionsofAg+ arenotphotosensitive. 2. Parts-per-billion(ppb)dilutionsofHg+2 inHClaremorestabletoadsorptiononthecontainerwallsthanaredilutionsinHNO3. SelectingaSamplePreparationApproach TheChecklist Thefollowingchecklistshouldbeconsideredpriortoselectingamethod: ü Theidentityoftheanalytesandpotentialchemicalforms. ü Theconcentrationrange(s)oftheanalyte(s)andthedetection limitrequirement(s). ü Thechemicalandphysicalcompositionofthesamplematrix. ü Theavailabilityofapparatusandequipment. ü Thesamplesizethatisavailableorrequired. ü Thepotentialforcontaminationduringsomepartofthesample preparationprocess. SelectingaSamplePreparationApproach FinalApproach • Theanalystisnowinapositiontoselectthepreparationtechnique. • Thisinvolveschoosingthemodeofattack(aciddigestion,ashing,fusion). • Thespecificchemicalreagentsandthecontainer(s)materialsneededto carryoutthepreparation. • Theanalystmustkeepinmindthatcontaminationissues,plusany difficultieswithinthefinalsamplesolutionmatrix,willhaveanimpact upontheICP-OESand/orICP-MSmeasurementtechniques SelectingaSamplePreparationApproach HNO3-HF / HCl / HF All mineral acids OK Li Na, cntmnt rsk K Rb Cs B cntmnt rsk P As S Se V Cr Mn Fe cntmnt rsk Co Ni Cu Zn cntmnt rsk Ga In Re U Al cntmnt rsk Cd cntmnt rsk Tl U Bi HNO3 / HCl mDL avoid HF & SO4= Th Ge Mg cntmnt rsk Ca cntmnt rsk Sr Sc Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu HNO3-HF / HCl mDL HF suggested Te Sb Mo Ti Zr Sn HNO3-HF HF a must Si cntmnt rsk Ge Hf Nb Ta W White lettering is volatility risk mDL = minimum Detection Limit HNO3 - HCl mDL mDL no SO4 Ba Pb cntmnt rsk Hg HNO3-HF no HCl Ag HNO3-HF / HCl mDL mDL be Alert to reduction Rh Pd Pt Ir Au Ru HCl avoid HNO3 Os loss as OsO4 mDL mDL SelectingaSamplePreparationApproach Organic Inorganic %Ash Fnctl grps grams Matrix/Description Pharmacuetical Transportation Environmental Metallurgical Construction Agricultural Automotive Petroleum Cosmetic Chemical Medical Energy Mining Textile Food A.Ash D.AcidDig. F.Fusion Grinding Ashingcanbecombinedwith aciddigestionorfusion. Sampling Volatility Contamination Chemical Restrictions HF HNO3 HCl SO4 CRO4 Misc ContainerMaterialProperties— Materials Laboratoriesusemanydifferentcontainermaterialsforhandlingsamplesduring samplepreparation.Somematerialsaremoreadvantageoustousethanothers. Herewe'lllookatthepropertiesof: • • • • • • BorosilicateGlass Porcelain Quartz Platinum,5%Au/Pt Graphite,GlassyCarbon PlasticsincludingPFAandPTFETeflon ContainerMaterialProperties— BorosilicateGlass • BorosilicateglassisusedextensivelyforaciddigestionsinvolvingHNO3,HCl, H2SO4. • Shouldnot beusedforashing orfusions andattemperatures>500ºC. • Itisresistanttomostacids,butshouldnot beusedwithHF orboilingH3PO4. • Asageneralrulealkalinesolutionsshouldnotbeheatedorstoredin borosilicateglass. • Borosilicateglasscancontributeavarietyofcontaminants. [Ca(1760),Si,(170),Na(130),Fe(3),K(30),B(60),Mg(53),Al(50),Mn(1.2),Zn(22),Sr(1.3),Sn(0.8),Sb(0.4),Ba(17) –valuesare(ppb)obtainedbyleachingnewborosilicateglasswith1%HNO3 for7daysat60˚C. • Itshouldnotbeheatedovertemperaturesachievableusingahotplate(500°C). Forexample,ifyouneedtoashasampleusingamufflefurnace,donotuse borosilicateglass. ContainerMaterialProperties— Porcelain • Porcelainisapopularmaterialused forashing purposes. • Affordable • PorcelaincontainsNa,K,Al,andSiinincreasingconcentration. • Itistypicallycoatedwithaglazewhichisabout70%SiO2,withroughlyequal amountsoftheoxidesofAlandCa,andlesseramountsofNaandK. • Attackwilloccurifthesamplecontainsevenminoramountsofthealkalimetals. Thisismadeevidentbyadullinginthenormallyshinysurface. • Ifalkalisarepresent,thenthesampleistypicallytreatedwithconc.H2SO4priortoashing. • Thefollowingshouldnot beheatedinporcelain:HF;boilingH3PO4;andtheoxides, hydroxides,orcarbonatesofthealkalioralkalineearthelements. • Themajoradvantageorporcelainoverglassisthatitcanbeheatedupto1100°C ContainerMaterialProperties— Quartz • Therearetwotypesofquartz— opaqueandtransparent • Opaquequartzhasthehighesttraceelementconcentration • Transparentquartzcomesinfourdifferentvarieties • TypesI&IIaremadefromnaturallyoccurringquartzcrystalsorsands.TypeIis createdbyelectricmeltingandtypeIIbyflamemelting.TypeIIhasslightlyless impuritiesthantypeI(someimpuritiesarevolatilizedbytheflame). • TypeIIIquartzismadesyntheticallybyvaporphasehydrolysisofpuresilicon compoundssuchasSiCl4.Thistypeofquartzismorepurethanthenaturalquartz, withtheexceptionofCl. • TypeIVquartzissyntheticallymadefromSiCl4 usingaprocessinvolvingelectrical fusionoftheoxidizedstaringmaterial.ItisaspureastypeIII,withrespecttotrace metalcontent,andcontainsfarmoreCl- whichis~50ppm. ContainerMaterialProperties— Quartz(cont.) • Usethetransparentquartzwheneverpossible. • Quartzistypically99.8+%SiO2. • ItisattackedbyHF,boilingH3PO4,andthealkaliandalkalineearthoxides, hydroxides,andcarbonates. • Itcanbeheatedto1100°C. • Itsmainadvantageoverthatofporcelainisthatmajorcontaminationoccurs fromonlySi — however,thiscontaminationcanbesignificant. ContainerMaterialProperties— Platinum • Itisresistanttoattackbymostacidsandreagents.AvoidconcentratedH3PO4 athigh temperatures,HCl+HNO3 mixturesandfusions usingLi2CO3,Na2O2,orthealkalihydroxides. • Itheatsupandcoolsdownrapidly,makingitexcellentfor%ashdeterminations wherethe %ashisatlowlevels. • Fusions usingNa2CO3 arecommoninadditiontofusionsusingthealkaliborates,fluorides, nitrates,andbisulfates.Avoid heatingatprolongedtemperaturesinexcessof1100°C (M.P.=1772°C). • Platinumcanbedestroyedbyheatingwithmetalswithwhichitcanalloy.Avoidhigh temperatureheatingwithsamplescontainingsignificantlevelsofanymetalthatmaybeinor reducedtothemetallicstateduringtheheatingprocess.(Allpreciousmetals,Cu,Hg,Sn.) • Platinumisknowntocontaintraceamountsoftheotherpreciousmetalsandshouldnotbe usedfortheirpreparation. • AvoidashingsamplescontainingPinanyform,includingthephosphates. ContainerMaterialProperties— Graphite • Graphiteisveryinexpensiveandrelativelyclean,butverymessytoworkwith. • ItisaninexpensivewaytoperformLi2CO3 fusionswherethecrucibleslowly oxidizesawayoverthecourseof7–10fusions. • Itispopularbecauseitdoesnotwetbysomemeltswhichcanbepoured outquantitatively. • Lossesduetotheporosityofgraphiteshouldexcludeitsuseforashing samplescontainingtracemetals. • Graphite'smainadvantagetothetraceanalystisbeingamaterialthatcan withstandfusionsthatmightdestroyplatinum. • OurchemistsusegraphiteforperformingLi2CO3fusions. ContainerMaterialProperties— Plastics PhysicalPropertiesofCommonPlastics: FEP (FLUORINATEDETHYLENEPROPYLENE) PFA (PERFLUOROALKOXY) FLEP (FLUORINATEDHIGH-DENSITYPOLYETHLYENE) PMP (POLYMETHYLPENTENE) PP (POLYPROPYLENE) HDPE (HIGH-DENSITYPOLYETHYLENE) LDPE (LOW-DENSITYPOLYETHYLENE) ContainerMaterialProperties— Plastics(cont.) FEP (FLUORINATEDETHYLENEPROPYLENE) PFA (PERFLUOROALKOXY) FLEP (FLUORINATEDHIGH-DENSITYPOLYETHLYENE) PMP (POLYMETHYLPENTENE) PP (POLYPROPYLENE) HDPE (HIGH-DENSITYPOLYETHYLENE) LDPE (LOW-DENSITYPOLYETHYLENE) ContainerMaterialProperties— CommonUses • BorosilicateGlass– aciddigestions(noHF) • Porcelain– ashing (wetandsulfated),fusion(acidic) • Quartz– ashing (wetandsulfated),aciddigestions(noHF),fusions(acidic) • Platinum– dryashing (notPcontaining)ashing (wetandsulfated),fusion (sodiumcarbonatebutnotLithiumcarbonate,alkalihydroxidesandornitrates), fusion(lithiumtetraborate/carbonate)fusion(acidic) • Graphite– lithiumcarbonatefusion • Plastics– Teflon(PTFE,PFAforaciddigestion),containingdigestates/sample solutions(LDPEisbyfarthebest) Contamination SeetheTraceMetalsAnalysisguideinthe‘TechCenter’onthe InorganicVentureswebsitefor: • EnvironmentalContamination(Chapter8) • ContaminationfromReagents(Chapter9) • ContaminationfromtheAnalystandApparatus(Chapter10) SamplePreparationBasics Ashing– TechnicalAdvantages • TheabilitytodecomposelargesamplesizesachievinglowDLs. • Lowreagentblanks- theneedforlittleornoreagents. • Thetechniqueisrelativelysafe. • Elapsedtimesarehoursbutactualanalystattentionrequiredisminutes. • Theabilitytopreparesamplescontainingvolatilecombustionelements suchassulfur,fluorineandchlorine(theSchönigeroxygenflaskcombustion techniqueisverypopularinthiscaseinadditiontolowtemperatureplasma ashing). • Usingashingaidsveryfewelementsarelost(S,Se,andHgareproblematic). • Thetechniquelendsitselftomassproduction. SamplePreparationBasics Ashing— DryAshing • DryAshingisusuallyperformedbyplacingthesampleinanopeninertvesseland destroyingthecombustible(organic)portionofthesamplebythermal decompositionusingamufflefurnace. • Typicalashingtemperaturesare450to550°C. • • • • • Charringonahotplateortheuseofaprogrammablefurnaceisadvantageous. Magnesiumnitrateiscommonlyusedasanashingaid. Forlargersamplesizescharringthesamplepriortomufflingispreferred. Charringcanbeaccomplishedusinganopenflame. Ignitionandburningofthesamplecanbeveryhelpful.Thisiswidelyusedinthe polymerandpetroleumindustries. • Porcelainandplatinumaremostpopularcruciblematerialsfollowedbyfused silicaandquartz. SamplePreparationBasics Ashing– DryAshingwithH2SO4 asanAshingAid • TheadditionofsmallquantitiesofH2SO4 or‘sulfatedashing’involvestreatmentofthe sampleaftercharringwithsulfuricacid. • • Thechariswettedusingtheminimumamountofsulfuricacidandthenbroughttodryness. • • • Beforeplacinginamufflefurnace,thecharshouldbeheatedto>400˚C. • DonotsulfatesamplescontainingBaorPb. Sulfationcanpreventvolatilizationlossofvolatilechlorides,preventattackofsilicaand aluminabasedcrucibles,preventformationofalightfriableashandpreventformationof somerefractoryoxidesmakingthefinalasheasiertodissolve. Attempttokeeptheashingtemperaturebetween450and500˚C. Sulfatedashesgenerallydiscouragetheformationofrefractoryoxidesduringmuffling makingdissolutionseasier. SamplePreparationBasics Ashing– ‘Wet’AshingwithH2SO4 asanAshingAid • TheadditionofmLquantitiesofH2SO4 or‘wetashing’involvestreatmentofthe samplebeforecharringwithsulfuricacid. • Charring/digestionisperformedusingeitheranopenflameorhotplate. • Liquidsamplestendtofoam.Constantattentionfromtheanalystisadvisedand thetreatmentprocessistediousandslow.Consequentlythisapproachisnot popular. • Aftertheexcesssulfuricacidisdrivenoff,thesampleismuffledasabove. • Wetashingischosenoversulfatedashingtoavoidcrucibleattackwith‘caustic’ samplesoranalytelossthroughreactionwithcruciblecontainer. • NotsuggestedforsamplescontainingBaorPb. SamplePreparationBasics Ashing– LowTemperatureAshing • Low-temperatureAshinginvolvestreatmentofthesampleat~120°Cusing activated(singletstate)oxygen.Lifetimeofexcitedoxygenis~1second. (Oxygenispassedthroughahigh-frequencyelectricfieldof13.5MHz.) • Used fortraceanalysisoforganicsamplessuchascoal.Lookforpossiblelosses ofhalogens,SandHg. • Oftenusedonsamplestoavoidanalytelossesofvolatileanalytes(As,Cd,Sb) andvirtuallyeliminatesrxn.betweenresidueandashingcontainerreducing contamination. • Usedforthetraceanalysisofcoals.Samplesize isgreater thanforaciddigestion. • Sampleisspreadoutoverashingcontainertospeedupprocess— is stillslow requiring1–3daysdependinguponsamplesizeandorganicstructure. SamplePreparationBasics Ashing — ClosedContainerAshing • ClosedSystemAshing involvesthermaldecompositioninoxygeninaclosed systemsuchasaSchöniger flask. • SampleiswrappedinpaperandheldinaPtbasket.Asolutionatthebottomof theflaskisusedtoabsorbthecombustionproducts. • ThistechniqueismostcommonlyusedforhalogensPandSincombustible organicmatrices.Convenientforanalyzingcompoundsseparatedbypaper chromatography.Usefulintheanalysisofradio-isotopesinbiologicalmaterials (3H,14C,and35S). • Flasksaremadeofborosilicateglassorpolypropyleneforfluorineanalysis. • A1literSchöniger flaskholdsenoughoxygen tocombustupto150mgof sample. • Thistechniqueiswidelyusedinmicroelemental analysis. SamplePreparationBasics Ashing– PotentialProblems • • • • • • • Possiblelossduetoretentiontotheashing container. Possiblelossduetovolatilization. Contaminationfromtheashing container. Contaminationfromthemufflefurnace. Physicallossof'lowdensity'asheswhenthemuffledoorisopened(aircurrents). Difficultyindissolvingcertainmetaloxides. Formationoftoxicgasesinpoorlyventilatedareas.(Notethatallcharring shouldtakeplaceinahoodandthemufflefurnacemusthaveahoodcanopy forproperventilation). SamplePreparationBasics Ashing— AvoidingProblems • Ifthesampletypeisunknown(withrespecttothematrix)thenanEDXRFscan, IRscan,andC,H,andNanalysiswillprovidesufficientinformationinmostcases tomakeinformeddecisions. • ProtectyourPt0 warebylookingforP(highlevelswillattackandattachtothePt0) andelementsthatalloywithPt0 whichincludethepreciousmetals,Cu,andHg. • Whenusing'silica'containingcrucibles(porcelain,Vycor,quartz,glass,andfused silica)lookforelementsthatformbasicoxidessuchasthealkaliearthelements. Naiscommonlyfoundandit'soxidewillform(unlessthecharissulfated)and attackthesilica. SamplePreparationBasics Ashing– AvoidingProblems(cont.) • Lookforvolatileelements(Cd,B,Hg,Pb,Se,Zn,As,Sn,Sb,S,andhalogens) especiallyifmoderatetolargeamountsofForClarepresent. • Siisacommonelementthatistypicallydeterminedbydissolutionofanash performedinPt0.Methylsiliconesarewidelyusedandverycommon.IfSiis presentasasiliconeoilthenitwillbepartiallylostasthehexamethycyclotrisiloxane andthehexamethydisiloxane. • Retentionandphysicallossofanalyte(s).TheuseofhighpurityMg(NO3)2 as anashing aidwillhelppreventlossesof'lowdensity'ashes,andwillhelpin preventingretentionlosses. SamplePreparationBasics Ashing— AvoidingProblems(cont.) • Fordifficulttodissolveoxidesuseaslowanashingtemperatureaspossible (400to550°Cmaximum)forsamplestobeanalyzedforTi,Zr,Nb,Hf,Ta,W,Ni,Co,Fe, Cr,Sb,andMo.Pt0 isnotattackedbyHFwhichwilldissolveseveraloftheaboveoxides. • Lossduetoreductiontothemetalcanoccur.Lookforeasilyreducedelementssuchas Cuandthepreciousmetals.Usetheappropriatecruciblematerialtoallowforthe necessarydissolutionreagentsforthemetal.Ptcruciblesshouldnotbeused. • WhenusingPtrememberthatcertainelements‘alloy’withitincludingHg,Cuand manyofthepreciousmetals. • WhenusingPtrememberthatithasarathercomplexspectrumandmayinterferewith ICP-OESmeasurement(somePtisalwayslostduringeachpreparation). • Rememberthatatleasttraceamountsofyourcruciblematerialwillendupinyour samplesolution. SamplePreparationBasics AcidDigestions • Aciddigestionshavetheadvantageofretaining'volatile'analytes (refluxcondenserisneededforsometraceelements). • Aciddigestionshavethedisadvantageofbeingtediouswhenlargesample sizesarerequired. • Aciddigestionsareidealifthesamplesizeis<1gram. • Nitricacid(HNO3)isusedinpracticallyeveryaciddigestionprocedureandis commonlyusedincombinationwithotheracids. • Nitricacidispopularbecauseofitschemicalcompatibility,oxidizingability, availability,purity,andlowcost. SamplePreparationBasics AcidDigestions— InorganicSamples • Nitricacid* isusedprimarilyinthepreparationofinorganicsampletypes.++ Itisaveryusefulcomponentinthedestructionoforganicsbutcannotby itselfcompletelydecomposeorganicmatrices. *AllreferencetoHNO3 willmean69%'concentrated'nitricacidunlessspecifiedotherwise. ++Theconventionalmeaningofinorganicisintendedalongwiththepresenceoflowmolecularweightwatersoluble organiccmpds.andorganometalliccmpds.containingrelativelysmallmolecularweightorganiccomponents. SamplePreparationBasics AcidDigestions— InorganicSamples • Dilute10–15%aqueousdilution— AlkaliandAlkalineearthoxides,lanthanide oxides,actinideoxides,Sc2O3,Y2O3,La2O3. • 1:1HNO3 /H2O— V2O5,Mn oxides,CuO,CdO,HgoxidesTloxides,Pb oxides, Bioxides,Cu0,Zn0,Cd0,Hg0,Pb0. • Concentrated(69%)HNO3 — Mn0,Fe0 (hot),Co0,Ag0,Ni0,Pd0(hot), Se0,As0,Bi0,Re0. • 1:3HNO3 /HCl — Pt0,Au0,steel,Fe/Nialloys,Cualloys,Cr/Nisteel. • 1:1:1HNO3 /HF/H2O— ThemetalandoxidesofTi,Zr,Hf,Nb,W,Sn,Al,Si, Ge,Sb,Te,As,Se,Moandnumerousalloysandoxidemixturescontainingone ormoreoftheseelements. SamplePreparationBasics AcidDigestions— InorganicSamples— EPAMethod3052 • Thismethodisapplicabletothemicrowaveassistedaciddigestionofsoils,ash, sediments,sludgesandsiliceouswastes. • TypicalAcidmixis9mLnitric+3mLHF.Sometimes2–4mLofHClisadded. • Ithasbeenclaimedtobea‘UniversalMethod.’ • Typicallynomorethan0.5gramsofsampleisdigested. • Themethodallowstheanalystthefreedomtovarytheratiosofacidsbutlimits aredefinedbythemethod. • Withsmallamountsoforganicstheuseof30%hydrogenperoxideisallowed (0.1to2mL). SamplePreparationBasics AcidDigestions— InorganicSamples— EPAMethod3052 • Theadditionofwater(0to5mL)isallowedandmayimprovethesolubility ofmineralsandpreventtemperaturespikesduetoexothermicreactions. Mayalsoalterthereductionpotentialofthenitricacid. • Thismethodisdesignedtoachievetotaldecompositioninsealedinert polymericmicrowavedigestionvesselswherereactionsreachingtemperatures of180˚Cin5minutesareallowedtoreactatthistemperaturefor9.5minutes. • Themethodrequiresamicrowavesystemthatwillsenseandmaintainthe temperaturebyadjustingthemicrowavefieldoutput.Temperaturefeedback controlprovidestheprimarycontrolperformancemechanismforthemethod. SamplePreparationBasics AcidDigestions— InorganicSamples— NitricAcid(cont.) • Intheexampleslistedabovenitricacidisactingasastrongacidwhere inorganicoxidesarebroughtintosolution… 1. CaO+2H3O+ =Ca+2 +3H2O • Andasanoxidizingagent/acidcombowherezerovalenceinorganicmetals andnonmetalsareoxidizedandbroughtintosolution… 2. Fe0 +3H3O+ +3HNO3 (conc.)Fe+3 +3NO2(brown)+6H2O 3. 3Cu0 +6H3O+ +2HNO3 (dilute)2NO(clear)+3Cu+2 +10H2O • Inaddition,nitricaciddoesnotformanyinsolublecompounds. Thesamecannotbesaidforsulfuric,hydrochloric,hydrofluoric,phosphoric, orperchloricacids. SamplePreparationBasics AcidDigestions— InorganicSamples— NitricAcid(cont.) Nitricacidundergoesbothoneandthreeelectronchanges.Theoneelectronchange isobservedwhenconcentrated.Incomparison,the3electronchangeisobserved whendiluteinreaction(3).Thepresenceofbrownfumesisindicativeofreactions goingby1electron. 4. H3O+ + HNO3 + e-1 = NO2 (brown) + 2H2O : Concentrated 5. 3H3O+ + HNO3 + 3e-1 = NO (clear) + 5H2O : Dilute SamplePreparationBasics AcidDigestions— InorganicSamples— NitricAcid(cont.) • Nitrateisgenerallyconsideredtobea'poorligand'inthatitscoordination abilityisnotenoughtokeephydrolysisfromoccurring.Thisstatementmaybe contradictedincertaininorganictextbooks. • Themostcommon‘goodligands’usedincombinationwithnitricacidare HCl,HF,H3PO4 andtartaricacid(forSb).Ifnitricacidwasabetterligand, theseadditionalacidswouldnotbeneeded. • ConcentrationsofHNO3 between65%and69%areknownas‘concentrated;’ concentrationsgreaterthan69.2%areknownas‘fumingnitricacid.’ • 100%nitricacidislightandheatsensitiveandboilsat84°C.‘Concentrated’ nitricacidboilsasanazeotrope(withwaterat69.2%HNO3)atatemperature of121.8°C.ThedistilledHNO3 (tracemetalsgrade)shouldbeatthe69.2% concentrationlevel. SamplePreparationBasics AcidDigestions— InorganicSamples— NitricAcid(cont.) • Checkwithyourmanufacturerofdoublydistillednitricacidtodetermineifthe containerinwhichitispackagedisnitricacidleachedpriortouse.Inthecaseof Tefloncontainers,thecontainermaterialisgenerallyassumedtobepure. • PTFEandPFATefloncanbeheatedwithconcentratednitricacid,evenat highpressuresorwithcombinationssuchasnitric+HCl,nitric+HF,and nitric+H2O2. • Nitricacidisnotastrongenoughoxidizingagentbyitselftoconvertorganic moleculestoCO2 andH2O(completelyoxidize). SamplePreparationBasics AcidDigestions— OrganicSamples • Thelackofnegativesideeffectsisunfortunatelylimitedtotheinorganicsideofthe table.Theabilityofnitricacidtoreactwithalcoholsandaromaticringsforming explosivecompounds(nitroglycerinandTNT,tonametwo)callsforcautionwhen usingnitricacidaloneorincombinationwithotherreagentsinthedecomposition oforganicmatrices. • Ifyoursamplecontains-OHfunctionalityitisbesttopre-treatthesamplewith concentratedsulfuricacid.Whenconcentrated,thesulfuricwillactasadehydrating agent.— R-CH2-CH(OH)-R'+H2SO4 R-CH=CH-R'+H2O • Idonotrecommendtheuseofnitricacidforthedigestionofhighly aromaticsamples. • NitricaciddoesnotbreakdownorganiccomponentstoCO2andH2O. SamplePreparationBasics AcidDigestions– OrganicSamples(cont.) • Nitricacidisrarelyusedalone. • Itisbestusedincombinationwithsulfuricand/orperchloric acidsfororganic sampledigestion. • Forsamplesthatarenothighlyaromaticand/orcontainahigh-OH functionality,Iprefertousenitricacidfollowedbyperchloric acid. • Theonlyelementthatmay belostfromanitric/perchloric digestionisHg. • Careshouldbeexercisedandtheliteratureconsultedbeforeattemptingtouse nitricacidincombinationwithotheracidsfororganicsampledigestions SamplePreparationBasics AcidDigestions— OrganicSamples— Nitric+PerchloricAcid fordetailedproceduregotoInorganicventures.comandthengothechapter12ofthe TraceMetalsGuide locatedthe‘TechCenter’ • Organicmatricesshouldalwaysbepre-treatedwithnitricacid(seeexceptionsabove). • Perchloric acidshouldneverbeusedalone. • Perchloric aciddigestionsshouldneverbeallowedtogotodryness. • Hotperchloric acidshouldneverbeaddedtoanorganicmatrix. • Samplesizesshouldneverexceed1gram(dryweightforbiologicals). • Perchloric acidfumesshouldbenotbeallowedto‘gofree’unlessaperchloric acid hoodisused. • Unknownorganicmatricesshouldbeanalyzedbymolecularspectroscopytodetermine primarystructurebeforeattemptingtheuseofeithernitricorperchloric acid. SamplePreparationBasics AcidDigestions– 98%H2SO4 • • • • Dilutesulfurichasnooxidizingpowerbuthotandconcentratedis. SulfuricacidisusedtooxidizeSbandalloysofAs,Sb,andSn. Pb presentinalloysisoxidizedandprecipitatedasthesulfate. Sulfuricacidwithcatalysts(CuSO4,orSeO2 orHgSO4)isbasisfortheKjeldahl digestion method(determinationofNitrogen). • Thedropwiseadditionof30%H2O2 tohotfumingsulfuricacidisusefulfororganic matrices.HaveusedforBeingrease. • TheadditionofnitricaciddissolvesalloysofMo,Zr,Sn,steels,carbides,oresof molybdenum.Sulfides,andZnores. • Theadditionofnitric+HCl willoxidizesteels. • Theadditionofnitric+perchloric acidisverypowerfulforhardtooxidizeorganicsamples. SamplePreparationBasics Fusion— Fusionsareconsideredtobemoreofa‘lastresort’ bytraceanalysts: • Theyareexpensiveandoftennotavailable(highpurityfluxes). • Theyyieldhighsolidssolutionsthatcansaltoutinthenebulizerandcause sensitivitylosswithICP-MS. • Largedilutionsofthesamplearesometimesrequired. • Contaminationofthesamplewiththecrucibleconstructionelementand impuritiesmustbeconsidered. • However— fusionisanessentialcapabilityforalaboratoryreceivingawide varietyofsampletypes. • Itisthebestapproachformanyinorganicrefractories. SamplePreparationBasics Fusion— Pyrosulfate(K2S2O7)orBisulfate(KHSO4) • • • • • • • • Flux— K2S2O7 orKHSO4 whichconvertstothepyrosulfatewhenheated Crucible— Pt0orfusedsilica/quartz(lessthan.3mgsilicalost/fusion) Flux:Sampleratio— 20:1 Temperature— 500˚C Time~20minutes MostPopularApplications— TiO2,ZrO2,Nb2O5,Ta2O5 Easy toperform.Mosteasilyperformedoveraflame. Iffluxbeginstosolidifyduringheatingadd98%sulfuricaciddropwisetoregenerate KHSO4 (MP197˚C)heatedformsK2S2O7(MP325˚C)whenheatedforms K2SO4 (MP1069˚C) SamplePreparationBasics Fusion— Pyrosulfate(K2S2O7)orBisulfate(KHSO4)(cont.) Heatuntilmeltisclear • Ifaflameisnotavailablethenuseamuffleat500˚C. • Swirlingmeltwhileheatingispreferred. • Swirlmeltontowallsafterremovingheat.Meltwillcoolandcrackintosmall piecesthatareeasiertodissolve. • Dissolvemeltinaqueoussolutionscontainingappropriateacidorstabilizer. SamplePreparationBasics Fusion— Pyrosulfate(K2S2O7)orBisulfate(KHSO4)(cont.) • Duringfusionlosses ofsulfur asH2S,fluoride asHF,carbonate asCO2,borate as H3BO3,arsenite asH3AsO3,arsenate asH3AsO4,selenite asH2SeO3,andchloride asHClwilloccur. • IffluorideispresentsomeSiwillbelostandifCl,BrorIarepresentsome Sb,Sn,Ge,andVwillbelost. • Thisfusionisusedfordealingwithrefractoryoxidestypicallyformedwhen ignition/ashingtemperaturesaretoohigh.TheoxidesofBeFe,Cr,Mo,Te, Ti,Zr,Nb,andTa. • Ihavefoundthismethodveryusefulfordealingwithbrookite (averyrefractory formofTiO2). SamplePreparationBasics Fusion— LithiumBorate • Flux— Li2B4O7(tetraborate);LiBO2 (metaborate);H3BO3 +Li2CO3 at1:1(matterof preference— metaborateusedforchromite(Fe++Cr2O4). • • • • • FusionsallowforthedeterminationofNaandK. Crucible— Pt0;Pt0/Au0;occasionallyAu0 orgraphite. Flux:Sampleratio— 10:1 Temperature— 950to1200˚C MostPopularApplications— SiO2,Al2O3,alumino-silicates(variousminerals, zeolites,etc.),chromite. • Fusionanddissolutionoffuseate(typicallyin5%nitric/water)hasbeen automatedusingcommerciallyavailable‘fluxers.’ SamplePreparationBasics Fusion— NaOHorKOH • Flux— NaOH(MP321˚C);KOH(MP404˚C)advantageoverthecarbonatefusion asamuchlowertemperatureisrequired. • Crucible— Ag0;Ni0 (alkalihydroxidesattackPt0)– MessywithlotsofNi contamination • Flux:Sampleratio— 20:1 • Timeis~30minutes • Temperature— 500˚C(maxof600˚C/Ni0 and700˚C/Ag0). Morecrucibleattackathighertemperatures. • MostPopularApplications— Silicates(glass,porcelain,kaolinetc.)and aluminosilicates SamplePreparationBasics Fusion— KOH+KNO3 • Flux— (7:1)KOH:KNO3 • Crucible— Ag0 • Flux:Sampleratio— 7:1 • Temperature— 650˚C(maxof700˚C/Ag0). Morecrucibleattackathighertemperatures. • MostPopularApplications— Ruthenium,Chromite,“Organics” (“Organics”referstoorganiccontainingsamples.Boththesodiumand potassiumhydroxide/nitratemixtureshavebeenusedforawidevariety ofbiologicalmaterials,soils,coalandorganicsamples.) SamplePreparationBasics Fusion— Na2CO3 • • • • • • Flux— Na2CO3; mp=853ºC Crucible— Pt0 Flux:Sampleratio— 20:1 Temperatureoffurnace– 1000˚C;Time~20minutes 5–9spurityfluxisavailable MostPopularApplications— Na2CO3 fusionsareverypopularinthe decompositionofminerals,silicates,refractories,insolublemetalfluorides,etc. forexample,brookiteTiO2 willnotbeattackedbyacids,andAl2O3 isvery resistanttoacidattack. • Ipersonallylikeitformanyorganicmatrixdecompositionswhereitis addedtothesamplebeforeashing. SamplePreparationBasics Fusion— Li2CO3 • Flux— Li2CO3 • AdvantageislowertemperaturebutdisadvantageisthatPtcan’tbeused. • Crucible— Graphite. CAUTION — Li2CO3 willattackPtcrucibles. • Flux:Sampleratio— 5:1 • Temperature— 700˚C • MostPopularApplications— SimilartoNa2CO3 SamplePreparationBasics Fusion— Li2CO3(cont.) • Lithiumsaltsareverywaterandorganicsolventsoluble. • LithiumhasrelativelyfewspectrallinesfortheICP-OESuser. • Signalquenching(signalsuppressionbymatrix)isrelativelyless(duetolowmass) thantheB,Na,orKcontainingfluxesfortheICP-MSuser. • Lithiumcanbeobtainedinpureformasthecarbonateandisrelativelyinexpensive. • Li2CO3 meltsatrelativelylowtemperatures(relativetothepopularsodium carbonatefusion). • Youcanusegraphitecrucibles,whicharebothcleanandinexpensive(Ipreferglassy carbonwhichismoreexpensive,butverycleanandnotnearlyasmessy). • Li2CO3 isabasicfusionthatwillattackmanyoftherefractorymetaloxidesand sampletypesattackedbyNa2CO3. SamplePreparationBasics Summary— • BasicSamplePreparationTechniqueswerediscussednamelyashing,aciddigestionand fusion. • Therearemanymodificationtotheaboveapproachesreported. • Microwaveinstrumentationiscommerciallyavailableforashing,aciddigestionandfusion. • Microwavecapabilitygivestheanalystadecidedadvantageinspeedandconvenience aswellasanadvantageinavoidingenvironmentalcontaminationsincemanypreparation areperformedinclosedoranenvironmentallyprotectedapparatus. • Thematerialdiscussedisintendedtogivethetraceanalystandintroductiontosample preparationandshouldbefollowedbyliteratureresearchwhendevelopingor establishingcapabilitiesnewtoyourlaboratory. • Theonlybadquestionistheonenotasked. Technical Support – Available to Everyone Online Resources at inorganicventures.com • Customers can visit our website’s Tech Center, which includes: – Interactive Periodic Table – Sample Preparation Guide – Trace Analysis Guide – ICP Operations Guide – Expert Advice – And much, much more.
© Copyright 2025 Paperzz