Math 1206 Common Final Exam Fall 2010 Form B Instructions: Please enter your NAME, ID Number, FORM DESIGNATION, and your CRN on the opscan sheet. The CRN should be written in the box labeled ‘COURSE‘. Do not include the course number. Darken the appropriate circles below your ID number and below the Form designation letter. Use a number 2 pencil. Machine grading may ignore faintly marked circles. Mark your answers to the test questions in rows 1 - 15 of the op scan sheet. Your score on this test will be the number of correct answers. You have one hour to complete this portion of the exam. Turn in the op scan sheet with your answers and the question sheets, including this cover sheet, at the end of this part of the final exam. Exam Policies: You may not use a book, notes, formula sheet, or a calculator or computer. Giving or receiving unauthorized aid is an Honor Code Violation. Signature: Name (printed) Student ID # 1. Use the trapezoid rule with five evenly spaced partition points to approximate the integral given the table of values x f (x) A. 3 2 B. − 0 1 3 2 3 -1 6 -4 9 3 12 2 C. −3 D. − 1 2 2. The area of the region bounded above by y = x and y = 1, and below by y = A. 5 6 B. 1 6 C. 8 3 D. 1 2 3 x2 is 4 R 12 0 f (x) dx, 3. The integral to find the moment with respect to the x-axis, Mx , for the region of density 3 bounded by y = (x − 2)2 and y = 4 − x is 3 Z 2 x 4 − x − (x − 2) A. Mx = 3 Z 3 3 B. Mx = 4 − x − (x − 2)2 dx 2 0 Z 3 D. Mx = 3 x (4 − x)2 − ((x − 2)2 )2 dx dx 0 3 C. Mx = 2 3 Z (4 − x)2 − ((x − 2)2 )2 dx 0 0 4. Find the volume of the solid produced by rotating the area between the curves y = x = 2 about the y-axis. A. 22π B. 25π 5. Let g(x) = g 0 (x). R 2x 1 C. 8π 6 , y = 1, and x D. 16π f (t) dt where the graph of f (t) is given below. Find g(1), g(0), and an expression for f!t" 2.0 1.5 1.0 0.5 !0.5 !1.0 1 2 3 4 5 t 1 1 A. g(1) = − , g(0) = − , g 0 (x) = 2f (2x) 2 2 1 1 1 C. g(1) = − , g(0) = − , g 0 (x) = f (2x) 2 2 2 1 B. g(1) = 0, g(0) = , g 0 (x) = 2f (2x) 2 1 1 D. g(1) = 0, g(0) = , g 0 (x) = f (2x) 2 2 2 6. Find the average value of f (x) = sin(x) cos(x) over the interval [0, π2 ]. A. 1 2π B. 1 π C. 1 2 D. 1 √ 7. Evaluate lim (e−x x). x→∞ A. ∞ 8. Evaluate R B. −∞ C. 0 x2 sin(4x) dx. 1 1 1 cos(4x) + C B. − x2 cos(4x) + x sin(4x) + 4 8 32 1 1 1 D. x2 cos(4x) − x sin(4x) − cos(4x) + C 4 8 32 A. 2x sin(4x) + 4x2 cos(4x) + C C. x3 sin(4x) + x2 cos(4x) + C 2 9. Which integral is obtained from A. C. D. 1 R x4 √ 1 dx by an appropriate trig substitution? 2x2 − 3 √ !Z 2 2 1 dθ 9 sec3 θ √ !Z 2 2 1 dθ 4 9 sec θ tan θ 4 √ 9 3 Z 4 √ 9 3 Z B. D. 3 1 dθ sec3 θ 1 sec4 θ tan θ dθ 10. Evaluate A. R x2 x dx. +x−2 1 2 ln |x + 1| + ln |x − 2| + C 3 3 C. − 1 2 ln |x − 1| − ln |x + 2| + C 3 3 11. After using the table formula R √ x x4 − 4 dx becomes R√ u2 − a2 du p 4 x2 p 4 4 x − 4 − ln x + x − 4 + C A. 2 2 2 1 x2 p 4 4 2 p 4 C. x − 4 − ln x + x − 4 + C 2 2 2 R0 −∞ 1 ln |x2 + x − 2| + C 2 D. 1 2 ln |x − 1| + ln |x + 2| + C 3 3 √ u√ 2 a2 2 2 2 = u −a − ln u + u − a + C, the integral 2 2 p x 4 2 p 4 4 B. 2 x − 4 − ln x + x − 4 + C 2 2 p 1 xp 4 4 4 D. x − 4 − ln x + x − 4 + C 2 2 2 12. Evaluate B. ex dx. 1 + (ex )2 A. ∞ B. π 2 C. 0 D. π 4 13. It requires a force of 3 pounds to hold a spring stretched two inches beyond its natural length. How much work (in inch-pounds) is done in stretching the spring from its natural length to five inches beyond its natural length. A. 75 in-lb 4 B. 75 in-lb 2 25 in-lb 3 C. 4 D. 10 in-lb 3 14. Evaluate the integral R√ x(1 − x2 ) dx. A. 5 3/2 x − x7/2 + C 3 B. 2 5/2 2 9/2 x − x +C 3 9 C. 1 −1/2 5 3/2 x − x +C 2 2 D. 2 3/2 2 7/2 x − x +C 3 7 15. Find f (x) if f 0 (x) = e2x + x2 sin(x3 ) and f (0) = 1. A. f (x) = e2x + 1 1 cos(x3 ) − 3 3 1 1 1 B. f (x) = e2x + cos(x3 ) + 2 3 6 1 1 5 C. f (x) = e2x − cos(x3 ) + 2 3 6 D. f (x) = e2x − 5 1 1 cos(x3 ) + 3 3
© Copyright 2026 Paperzz