Revista Brasileira de Física, Vol. 16, n? 2, 1986 Surface Electrons on Helium Films* NELSON STUDART' Departamento de Fisica, Universidade Federal de São Carlos, Caixa Postal 676, São Carlos, 13560, SP, Brasil and Departamento de Fisica e Ciências dos Materiais, Instituto de Fkica e Química de São Carlos, USP, Caixa Postal 369, São Carlos 13560, SP, Bmsil Recebido em 29 de julho de 1985; 22 versão em 22 de novembro de 1985 Abstract T h e o r e t i c a l c a l c u l a t i o n s o f some p r o p e r t i e s o f two-dimensional e l e c t r o n s on a l i q u i d helium f i l r n adsorbed on a s o l i d s u b s t r a t e a r e r e viewed here. We describe the spectrum o f e l e c t r o n bound s t a t e s on b u l k helium as w e l l on h e l i u m f i l r n s . The c o r r e l a t i o n a l p r o p e r t i e s , s u c h as the s t r u c t u r e f a c t o r and c o r r e l a t i o n energy, a r e determined a s f u n c t i o n s o f the f i l m thickness f o r d i f f e r e n t types o f substrates i n t h e f r a m e work o f a General i z e d Random-Phase Approximation. The c o l l e c t i v e e x c i t a t i o n s o f t h i s system a r e a l s o described. The r e s u l t s f o r e l e c t r o n s on the s u r f a c e o f t h i n f i lms and b u l k h e l ;um a r e e a s i l y obtained. We exami n e the e l e c t r o n i n t e r a c t i o n w i t h the e x c i t a t i o n s o f the l i q u i d helium s u r f a c e r e s u l t i n g i n a new p o l a r o n s t a t e , which was observed v e r y r e c e n t l y . The ground s t a t e energy and the e f f e c t i v e mass o f t h i s polaron a r e determined by u s i n g the p a t h - i n t e g r a l formal ism and uni t a r y - t r a n s f o r m a t i o n method. Recent s p e c u l a t i o n s about the phase diagram o f elect r o n s on the helium f i l m a r e a l ç o discussed. 1. INTRODUCTION The e x t e n s i v e study o f the p r o p e r t i e s o f the system formed by e l e c t r o n s on t h e s u r f a c e o f l i q u i d h e l i u m began i n the e a r l y w i t h the t h e o r e t i c a l p r e d i c t i o n made by Cole and cohen1, and seventies indepen- d e n t l y by s h i k i n 2 , about t h e p o s s i b i l i t y o f e l e c t r o n s being trapped on a d i e l e t r i c s u b s t r a t e where they could be conf ined by a p o t e n t i a l well i n t h e z - d i r e c t i o n and c o u l d move more o r l e s s f r e e l y i n the x-y plane o f the surface. A f t e r t h i s p r e d i c t i o n , a s e r i e s o f experiments were performed t o i n v e s t i g a t e t h i s system u n t i l Grimes and 6rown3 c o n c l u s i v e l y served t h e e x i s t e n c e o f these e l e c t r o n i c s u r f a c e s t a t e s i n a ob- beautiful spectroscopic experiment, This experiment c o n s i s t s i n the m e a s u r e m e n t of the microwave a b s o r p t i o n as a f u n c t i o n of an a 1 t e r n a t i n g e l e c t r i c *This is an invited review article ' C N P ~Research Fellow Revista Brasileira de Fisica, Vol. 16, n? 2, 1986 f i e l d a p p l i e d i n t h e d i r e c t i o n perpendicular t o the l a y e r o f on t h e s u r f a c e o f l i q u i d helium. They measured t h e electrons s p l i t t i n g s due t o t r a n s i t i o n s between d i f f e r e n t e l e c t r o n i c s t a t e s i n the well potential by observing the wave a b s o r p t i o n as the s p l i t t i n g s were tuned i n t o resonance w i t h t h e frequency o f the i n c i d e n t r a d i a t i o n . The m o t i v a t i o n f o r s t u d y i n g t h i s system f r o m a fundamental p o i n t o f view i s t h a t an immense v a r i e t y o f w e l l - d e f i n e d and c l e a n experiments can be done, which are i m p o r t a n t f o r t h e o r e t i c a l progress i n areas such as p h a s e - t r a n s i t i o n s two dimensions, many-body theory, the p o l a r o n s t a t e , t r a n s p o r t ena, the Wigner c r y s t a l l i z a t i o n , e t c . Furthermore, in phenom- r e a l i z a b l e techniques o f measuring t h e m o b i l i t y o f s u r f a c e e l e c t r o n s were employed f o r studyi n g the thermal s u r f a c e e x c i t a t i o n s o f quantum l i q u i d s and s o l i d s . We would l i k e t o emphasize the pedagogical appeal o f t h i s e l e c t r o n i c s y s tem. For example, the image- potential- induced s u r f a c e s t a t e s are ob- t a i n e d f rom a very s imple one-dimens i o n a l ~ c h r g d i n ~ eequation. r Moreover, a l a r g e amount o f t h e o r e t i c a l and experimental work could be done u s i n g techniques s u c e s s f u l l y a p p l i e d t o o t h e r systems and t h e r e a r e e x c e l l e n t reviews devoted t o t h i s f i e l d 4-9 , I n t h i s paper, we would l i k e t o surnmarize some r e c e n t t h e o r e t i c a l work, emphasizing t h e case o f e l e c t r o n s on the s u r f a c e oF l i q u i d h e l ium adsorved on a s u b s t r a t e . Theoutlineof I n s e c t i o r i 2, t h i s paper i s a s f o l l o w s . b r i e f l y discuss the general p r o p e r t i e s o f s u r f a c e h e l ium, such as the spectrum o f bound s t a t e s , electrons evaluated we on bulk througli model The d i e l e c t r i c c a l c u l a t i o n s and compared t o the experimental r e s u l t s . f o r m u l a t i o n o f t h i s two-dimensional ( 2 ~ many) electron system i s des- c r i b e d and we emphasize the breakdown o f t h e Random-Phase Approximation (RPA) by t r e a t i n g the c o r r e l a t i o n s o f the 2D c l a s s i c a l plasma. Hn Sec- t i o n 3, we analyse t h e new experimental s i t u a t i o n wi t h the e l e c t r o n s on the s u r f a c e o f a l i q u i d helium f i l m w e t t i n g a s o l i d s u b s t r a t e , sent the change i n the spectrum o f t h e e l e c t r o n i c s t a t e s due We preto and s u b s t r a t e , By v a r y i n g the f i l m thickness and t a k i n g d i f f e r e n t f i 1m sub- s t r a t e s one m o d i f i e s s i g n i f i c a n t l y the n a t u r e o f the electron interac- t i o n , from a s t r i c t l y d i p o l a r p o t e n t i a l t o t h e usual Coulomb t i o n f o r e l e c t r o n s c o n f i n e d i n a plane. I n s e c t i o n 4 , we interac- analyse in Revista Brasileira de Ffsica, Vol. 16, n? 2, 1986 d e t a i l the i n f luence o f the f i l m thickness and severa1 k i nds o f sub- s t r a t e s on the many-body p r o p e r t i e s o f the system, by u s i n g a k i n d o f General i zed RPA, the se1 f -cons i s t e n t f i e ?d m e t h ~ d ' ~'de , o b t a i n the c o r - r e l a t i o n a l p r o p e r t i e s f o r e l e c t r o n s on the s u r f a c e o: b u l k helium. thin f i lms I n s e c t i o n 5, we i n v e s t i g a t e the s e l f - l o c a l i z a t i o n ãnd o f an e l e c t r o n i n a p o l a r o n i c s t a t e by c o n s i d e r i n g i t s i n t e r a c t i o n w i t h a cloud o f r i p p l o n s , the quantum e x c i t a t i o n s o f the helium s u r f a c e . Our c a l c u l a t i o n s a r e c a r r i e d o ~ i tn the framework o f Feynman's path i n t e g r a l formalism" Low and the as w e l l as i n the m o d i f i e d v a r i a t i o n a l scheme o f P i nes theory '" ' trans i t ion , We discuss the i n t r i g u i n g Lee, in which the e l e c t r o n i c s t a t e transforms from a n e a r l y f r e e t o a l o c a l i z e d s t a t e , w i t h a dramatic increase o f the e f f e c t i v e mass. This polaron t r a n s i t i o n has been observed q u i t e r e c e n t l y i n the e l e c t r o n system l e v i tatir;g above a helium f i l m l ' . And, f i n a l l y , we d e s c r i b e soine r e c e n t speculations about the shape o f the phase diagram f o r l i u m f i l m s , wi:h e l e c t r o n s on he- the p o s s i b i l i t y o f c r e a t i n g a new 20 f l u i d w i t k an i n - t e r e s t i n g quantum Wigner t r a n s i t i o n n o t y e t w e l l s t u d i e d . 2. SOME PROPERTIES OF THE SURFACE ELECTRONS The e l e c t r o n i c s u r f a c e s t a t e s a r e induced by p o t e n t i a l between t h e e l e c t r o n and the helium s u r f a c e , from two d i f f e r e n t c o n t r i b u t i o n s : ( i ) a long-range the interaction which a r ises interaction coming from the p o l a r i z a t i o n o f the l i q u i d s u r f a c e and g i v e n by an a t t r a c t i v e image p o t e n t i a l and, ( i i ) a p o t e n t i a l b a r r i e r due t o P a u l i ' s exclusion principie which does n o t a l l o w an e x t r a e l e c t r o n i n the helium atom.The model p o t e n t i a l can be c o n s t r u c t e d as where t h e d i e l e c t r i c occupies the h a l f - s p a c e z < 0 . For helium, E we have = 1 . 0 5 7 and V . = 1 eV. I f one assumes t h a t the b a r r i e r c a n b e approxi- mately taken as i n f i n i t e and the p e r p e n d i c u l a r and para1 l e l motions can Revista Brasileira de Ffsica, Vol. 16, no 2, 1986 be separa ted, the ~ c h r g dnger i equa t i o n where I s solved e x a c t l y w i t h the boundary c o n d i t i o n s O n ( 0 ) = Qn(m) = O , s o l u t i o n s o f the unidimens i o n a l ( z - d i r e c t i o n ) The ~ c h r g d i n ~ e equation r are g i v e n by O (2) = n where R nvo Z R (2) n,o (2.3) ( z ) a r e t h e wavefunct ions o f the r a d i a l equa t i o n o f the hydro- gen atom w i t h zero angular momentum. The energy spectrum is then the wel 1-known s p e c t r i m o f the hydrogen atom, For the lowest subband, one has where a o is t h e e f f e c t i v e Bohr r a d i u s and = 7x10-' eV f o r elestr~ns on helium. Spectroscopic measurements by Grimes e t ~ 2 . 'showed ~ t r a n s i t i o n s between the ground s t a t e and the f i r s t e x c i t e d about 5% l a r g e r than those p r e d i c t e d by the hydrogenic model eq. ( 2 . 4 1 , as s h w n i n the t a b l e below Transi t i o n 11-3 2 Theory Experiment 119.7 GHz 125.9 2 0.2 GHz 141.8 GHz 148.6 0 . 3 GHz that the states are given by Revista Brasileira de Física,Vol. 16,n'? 2, 1986 This small discrepancy is attributed to interface effects such as the f ini teness of the potential barrier and the true behavior of the polarization interaction at small distances. In order to take into account these effects severa1 model calculations have been performed to fit the experimental results, In particular, HipÕlito et a2.16 have obtai ned an exact sol ut ion, in terms of conf luent hypergeometric functions, for the following model potential where B is an adjustable parameter. This model potential corresponds to treating the potential outside the surface as an image potential with the origin at a small distance B inside the dielectric. In fact, B is interpreted as being the posi tion of the center of mass of the induced charge, That is the effective position of the interface. Thus, this phenomenological potential e1 iminates the non-physical d i vergence of the classical image potential at the real interface. When the eigenvalue equation is solved as a function of B for the levels n = 1,2 and 3 and the energy separations between these levels are set equal to the takes the value 1.01 8. experimental values, the parameter In the experimental situation there is an additional potential coming from an external electric field F pressinç the electronsagainst the surface and distorting the fosm of the potential to Since there is no exact analytical solution for this problem, we have performed numerical calculations of the bound-state energies for the levels 1, 2 and 3, in the presence of the applied electricfield and with the value of B previously calculated. In fJg. 1, we show the trans i tions , from the ground-s tate to exci ted levels as observed in the experiments of Grimes et aZ. 1 5 . The spectrum looks I ike the Lyman series of the hydrogen atom. We plot in fig. 2 the transition frequencies as a function of the external electric field applied between two planar Revista Brasileira de Física, Vol. 16, n? 2, 1986 f = 220.0 G H Z * n POTENTIAL DIFFERENCE ACROSS CELL IVOLTS) - Fig.1 Experimental r e c o r d i n g o f mm-wave absorption d e r i v a t i v e v s the p o t e n t i a l d i f f e r e n c e across t h e e x p e r i m e n t a l c e l l taken a t a frequency o f 220 GHz and temp e r a t u r e o f 1.2 K. The l i n e a r S t a r k e f f e c t i s employed t o tune t h e s p l i t t i n g s between bound e l e c t r o n i c s u r f a c e s t a t e s on l i q u i d h e l i u m t o resonance w i t h t h e a p p l i e d r a d i a t i o n . The 1 -t 2, 1 -t 3 , t r a n s i t i o n s a r e analogous t o the Lyrnan a, 8 , transitions o f t h e hydrogen atom ( A f t e r C.C. Grimes et aZ, ref.15). .... ... e l e c t r o d e s one l o c a t e d above t h e surface and another i n s i d e the l i q u i d , The energy s e p a r a t i o m between the lowest subband and the lowest few exc i t e d subbands are cornpared w i t h those obtained n u m e r i c a l l y . As onesees, the experimental r e s u l t s a r e w e l l f i t t e d by the calcu.lation. The rnost s t r i k i n g f e a t u r e o f t h i s systern i s a c c e s s i b l e range o f electron densities n 2D Fermi energy i s g i v e n by - 10' - Lhe lo9 experimental crn-*. As the Revista Brasileira de Física, Vol. 16, no 2, 1986 120~- 50 I I 100 150 ELECTRIC FIELD (VOLTS!CM ) - Fig.2 Frequencies f o r the t r a n s i t i o n s 1 -t 2 and 1 + 3 as a f u n c t i o n o f externa1 f i e l d . The crosses a r e the experimental r e s u l t s o f Grimes e t d.15 whi l e the dashed curves a r e t h e i r model c a l c u l a t i o n . The s o l i d curvesare the r e s u l t s o f H i p ó l i t o e t a1.l6 based on the e x a c t l y s o l u b l e model p o t e n t i a l g i v e n by eq. ( 2 . 6 ) . F << kgT then E f o r temperatures above a few m i l l i k e l v i n s . Indeed, the e l e c t r o n system behaves I i k e a non-degenerate plasma described by a two -dimensional Rolczmann d i s t r i b u t i o n as a l i m i t o f the Fermi d i s t r i b u t i o n a t experimental d e n s i t i e s and temperatures. be c h a r a c t e r i z e d by a plasma parameter r I n t h i s way, the system can d e f i n e d as t h e ratio between t h e averages o f p o t e n t i a l and k i n e t i c energies, (T i n energy u n i t s ) . For smal 1 values o f ,'i the Coulomb i n t e r a c t i o n i s less important and we have a d i l u t e system a t h i g h temperature. termediate d e n s i t i e s , 1 < A t in- < 100, the system becomes h i g h l y correlated, Revista Brasileira de Flsica, Vol. 16, n? 2, 1986 o r l i q u i d - l i k e . A t h i g h d e n s i t i e s and low temperature, a s i t -i o n t o an ordered s t a t e , the c l a s s i c a l Wigner c r y s t a l phase- t r a n - , I n f a c t , one o f the most important development i n t o occur. i s expected thiij has been the o b s e r v a t i o n o f the c r y s t a l i z a t i o n o f e l e c t r o n s and ~ d a m s ' ~a t rm= field by Grimes 137. This r e s u l t i s c o n s i s t e n t w i t h c a l c u l a t i o n s simu~ c a r r i e d o u t us i ng molecular dynamics18 and Monte ~ a r l o ' computer l a t i o n s , We s h a l l come back t o t h i s p o i n t i n s e c t i o n 6 i n the c o n t e x t o f the h e l i u m f i l m s . The s i m p l e s t approximation t o t r e a t a 2D c l a s s i c a l plasma w i t h p a r t i c l e s i n t e r a c t i n g v i a a p a i r p o t e n t i a l +(r) = e * 2 / ~ , i s the Random . -Phase Approximation (RPA) The e f f e c t s o f the h e l ium s u b s t r a t e a r e i n cluded i n t o the renormal i z e d e l e c t r o n charge e* = (2/1+€)'12 sense, e , I n some t h i s approximat i o n i s e q u i v a l e n t t o the ~ebye-HÜckel method I" i t i s known t o be v a l i d i n the low d e n s i t y regime. f o r m u l a t i o n o f the many-body problem, the dielectric the d i e l e c t r i c f u n c t i o n + r e l a t e d t o t h e dens i ty-dens i t y response f u n c t i o n x(q,w) and .+ E(,~,W) is by where $ ( q ) i s t h e F o u r i e i transform of the bare p o t e n t i a l . The ~ J i e l e c - t r i c response f u n c t i o n i n RPA i s u s u a l l y c a l c u l a t e d on the b a s i s o f Ohe Vlasov e q u a t i o n and w i l l be d e r i v e d i n a more general c o n t e x t i n section 4. I n RPA, t h e d i e l e c t r i c f u n c t i o n t u r n s o u t t o be where x, ($,w) i s the densi ty- densi t y response f u n c t i o n o f t h e i tleal gas, g i v e n by x, where z = (w/q)(m/~)1'2. w r i t t e n as + (q,d = - (~/T)w(z) Here, ~ ( z i) s t h e plasma d i s p e r s i o n (2.12) furiction Revista Brasileira de Fisica, Vol. 16, n? 2, 1986 The s t a t i c s t r u c t u r e f a c t o r ~ ( q )i s related t o the imaginary p a r t o f t h e d e n s i t y - d e n s i t y response f u n c t i o n o f the system through the well-known f l u c t u a t i o n - d i s s i p a t i o n theorem I n the c l a s s i c a l l i m i t hw << T, t h i s f u n c t i o n can be w r i t t e n by means o f the Kramers-Kronig r e l a t i o n as where kD = 2 ? r n e 2 / ~i s the Debye wavevector. , The p a i r c o r r e l a t i o n f u n c t i o n g(r) wh i c h represents the propa b i l i t y o f f i n d i n g one p a r t i c l e a t a d i s t a n c e r from another one, is obtained f rom the inverse F o u r i e r t r a n s f o r m as I n RPA, g ( r ) i s g i v e n by20 where H, (x) and Y O(x) a r e r e s p e c t i v e l y the zero- order Struve and Bessel f u n c t i o n s o f second k i n d . So, the p a i r c o r r e l a t i o n f u n c t i o n diverges as - e 2 / ~ near r t h e o r i g i n , c o n t r a r y t o the exponential 3D behavior. This divergence i s s t r o n g l y manifested i n the c o r r e l a t i o n energy Ec g i v e n by wfiich diverges l o g a r i t m i c a l l y . T h i s i s a m a n i f e s t a t i o n o f o f t h e RPA i n d e s c r i b i n g the f e a t u r e s o f the 2D e l e c t r o n the failure plasma even Revista Brasileira d e Ffsica, Vol. 16. n? f o r small values o f r. 2. 1986 So, we cannot use t h i s approximation i n t h e s h o r t -range domain r 5 e 2 / ~ ,where the e l e c t r o n s a r e s t r o n g l y correlated, suggesting the importance o f the short- range c o r r e l a t i o n s i n a 2D sys- tem. Furtherrnore, t h e . p a i r c o r r e l a t i o n f u n c t i o n which must be p o s i t i v e def i n i t e f o r a11 separations takes on negative values i n t h i s r e g i o n . I n 3D, a s i m i l a r f a i l u r e has l e s s s i g n i f i c a n t e f f e c t s o n the corre- l a t i o n energy, because the short- range domain does n o t c o n t r i b u t e t o i t s l e a d i n g terms. Then, t h e inadequacy o f RPA i s much more s i g n i f i c a n t in two than three- dimensional system, From the zeros o f the d i e l e c t r i c f u n c t i o n one can d e t e r m i n e t h e c o l l e c t i v e e x c i t a t i o n s o f the system. I n the long-wavelength l i m i t and f o r small Landau damping, the plasma d i s p e r s i o n r e l a t i o n can be w r i t t e n and Thi s two-dimens i o n a l p!asmon i s very i n t e r e s t i n g because d i s p e r s i o n and damping r e f l e c t the incomplete screening i n 20. its Physi- c a l l y , plasmons a r e plane d e n s i t y waves propagating l i k e l i nes 01' charge i n 2D and sheets o f charge i n 3D. While the e l e c t r i c f i e l d requ i' red to r e s t o r e charge u n i f o r m i t y i s independent o f the wavelength X i n 3 D , it f a l l s o f f as h-' i n 2D. T h i s gives a plasmon frequency pendent o f q i n 3D and behaves l i k e eq. (2.18) whi ch i:; inde- i n 2D. 3. ELECTRONS ON THE SURFACE OF HELIUM FILMS The spectrum o f bound s t a t e s changes s i g n i f i c a n t l y i f e l e c t r o n s a r e p u t on a h e l i u m f i l m c o v e r i n g a s o l i d s u b s t r a t e constant E S' as shown i n f i g . 3 . with a dielectric I n t h i s case, the s u b s t r a t e i i i d u c e s a l t e r a t i o n s i n t h e image f o r c e s and one m o d i f i e s the e l e c t r o n i c s t a t e s by vary i n g o n l y the t h i ckness 2 of the f i l m . The image p o t e n t i a l can be Revista Brasileira de Flsica, Vol. 16, n? 2, 1986 r ELECTRON LAYER - Fig.3 Schernatic i l l u s t r a t i o n o f the geometric arrangement f o r t h e s u r f a c e e l e c t r o n s on f i l m o f l i q u i d h e l i u m adsorbeb on a s s b s t r a t e . w r i t t e n as where Q, = s 6 / ( ~ + 1 ) and ~ a = 4 ~ 6 , w i t h 6 = ( c s - E ) / ( E ~ + E ) ,Since the s e r i e s i s r a p i d l y convergent, one can r e t a i n o n l y the f i r s t term. A d e t a i l e d a n a l y s i s o f the spectrum o f the e l e c t r o n i c s t a t e s o n a helium f i l m adsorved on a metal (6=1) was g i v e n by Gabovich For t h i c k f i l m s , t h e c o n d i t i o n <z> n et ~ 2 . ~ 3 << d i s s a t i s f i e d and one canexpand as i n this l i m i t , f i e l d Fd - the s u b s t r a t e a c t s as an externa1 p r e s s i n g electric l/d2. The presence o f a l a r g e constant negative c o n t r i b u t i o n &,e2/d t o the p o t e n t i a l energy o f the e l e c t r o n g r e a t l y b i n d i n g energy o f e l e c t r o n s (11.6 meV f o r d = 300 8) increases as compared the b i n d i n g e n e r g y o f e l e c t r o n s o n b u l k helium (0.7meV). e f f e c t i v e e l e c t r i c f i e l d Q1.s/d2 and t h e van der Waals Due forces the with t o the coming from t h e s u b s t r a t e which s t a b i 1 i z e the e l e c t r o n - f i l m system (see sectíon 6) the maximum d e n s i t y t o which the s u r f a c e can be charged i n c r e a s e s drastical lyZ4. The c o r r e c t i o n t o the spectrum o f e l e c t r o n s on b u l k h e l ium (eq. 2.4) i s g i v e n by A& (d) = n - Revista Brasileira de Ffsica, Vol. 16, n? 2, 1986 which corresponds t o a f i r s t - o r d e r S t a r k e f f e c t o f the clampinq field Fd' For t h i n f i lms, one can n e g l e c t the image f o r c e s i n the h e l ium f i l m and the spectrum i s determined by the image c o n t r i b u t i o n substrate. of the I n t h i s s i t u a t i o n the e l e c t r o n p o t e n t i a l t u r n s o u t t o be the same as g i v e n by eq. (2.6) w i t h Q and f3 replaced b y Q, d respec- and t i v e l y . So, the energy l e v e l s d i f f e r markedly from the hydrogenüc spectrum and a r e g i v e n a p p r o x i m a t e d ! ~by f o r ã >> a, and h i g h quantum numbers. I t i s obvious t h a t the s u b s t r a t e wi11 a l s o a f f e c t appreciably the magnitude and n a t u r e o f the i n t e r a c t i o i ; between the e l e c t r o r i s i n the plane. The bare p o t e n t i a l between the eleccrons can now be foun~d f rom the i d e n t i t y w i t h a p p r o p r i a t e boundary c o n d i t i o n s f o r the f i e l d Z 5 . The r e s u l t, i n q-space, potential a n d e1 e c t r i c is where w i t h 6 defined through eq. (3.1). (d*) For e l e c t r o n s on t h e bulk Iielium we recover t h e usual p o t e r i t i a l f o r e l e c t r o n s conf ined i n e plane I n the 1 i m i t o f t h i n h e l ium f i lms (qd << 11, ~ ( q d )assumes the fclrm 205 Revista Brasileira de Física, Vol. 16, n? 2, 1986 For a m e t a l s u b s t r a t e , one o b t a i n s a p o t e n t i a l w n i c h does n o t depend on q, t h a t i s Then, i n t h i s case t h e i n t e r a c t i o n between e l e c t r o n s i s s t r i c t 1 y di- p o l a r , s i nce i n r e a l space one can w r i t e We rnust n o t e t h e d r a s t i c s c r e e n i n g o f t h e Coulcinb interaction comi ng from the substrate. For a s u b s t r a t ' e w i t h l a r g e d i e l e c t r i c c o n s t a n t cS >> for E, ) the form example a semimetal, ~ ( q d assumes As one can see, t h i s system c o n s t i t u t e s an e x c e l l e n t l a b o r a t o r y t o t e s t many-body t h e o r i e s , s i n c e , by v a r y i n g t h e f i lm t h i c k n e s s and t h e p a r t i c l e d e n s i t y w h i c h a r e t h e e x p e r i m e n t a l l y a c c e s s i b l e pararneters, one can change t h e n a t u r e o f t h e b a r e i n t e r a c t i o n between t h e p a r t i c l e s and t h e plasma p a r a m e t e r . 4. CORRELATIONS I N THE 2D CLASSICAL ELECTRON PLASMA The s t a t i c and dynamic p r o p e r t i e s o f e l e c t r o n s on t h e surface o f 1i q u i d h e l ium were s t u d i e d i n r e f e r e n c e s 26-28, As d i s c u s s e d i n sect i o n 2, t h e s h o r t - r a n g e c o r r e l a t i o n s a r e q u i t e i m p o r t a n t i n t h i s system, so t h a t an improvement o f RPA i s necessary. The c a l c u l a t i o n s have been c a r r i e d o u t on t h e b a s i s o f a k i n d o f g e n e r a l i z e d random-phase a p p r o x i mation, col t h e s e l f - c o n s i s t e n t - f i e l d method (SCFA)developed by Singwi and labor ator^'^, We s t a r t w i t h t h e L i o u v i l l e e q u a t i o n f o r t h e N - p a r t i c l e dis- Revista Brasileira de Fisica, Vol. 16, n? 2, 1986 -+ 3 p,. t r i b u t i o n f u n c t i o n fN(rl, 4 -+ .. -+ -+ rN, pNlt), i s def i ned as where the o p e r a t o r &(ri ,pi) (G.,t) i s an externa1 p o t e n t i a l . I n t e g r a t i ng t h e L i o u v i 1 l e and V ext z equation w i t h respect t o the coordinates and rnomenta o f N-1 p a r t i c l e s , one o b t a i n s the equation of motion f o r the o n e - p a r t i c l e 3 distribution -+ f u n c t i o n fl (r,p,t) 3 + + where f2(r,p,r1 ,pi I t) i s 3 the t w o - p a r t i c l e d s t r i b u t i o n f u n c t i o n . The equation o f motion f o r f, c o n t a i n s , i n t u r n , the t h r e e - p a r t i c l e d i s t r i b u t i o n f u n c t i o n and so on. I n the SCFA,this n f i n i t e h i e r a r c h y cjf equa- t i o n s i s t r u n c a t e d by decoupling the t w o - p a r t i c l e d i s t r i b u t i o n f u n c t through the ansatz -+ -+ where g ( r - r ' ) i s the s t a t i c p a i r c o r r e l a t i o n f u n c t i o n , With t h i s ansatz, t h e short- range c o r r e l a t i o n s a r e included, i n an approximate way,thraigh -+ -+ g ( r - r ' ) which g i v e s a measure o f t h e probabi l i t y o f f i n d i ng a s e c o n d + 3 r . Assuming g ( r ) = 1 -+ f o r a11 r i n eq. (4.4) i s e q u i v a l e n t t o the decoupling o f f, i n RIPA and -+ p a r t i c l e a t a p o s i t i o n r: when the f i r s t one i s a t leads t o the Vlasov equation. We assume now t h a t Revista Brasileira de Física, Vol. 16, n? 2, 1986 where f , ( p ) i s t h e equi 1 i b r i u m d i s t r i b u t i o r ! f u n c t i o n and the d e v i a t i o n o f f, 6f r e p r e s e n t s induced by the weak externa1 p o t e n t i a l . Using eqs. ( 4 . 4 ) and ( 4 , 5 ) one l i n e a r i z e s the e q u a t i o n o f motion. Proceeding i n the standard way, one o b t a i n s t h e induced p a r t i c l e d e n s i t y i n F o u r i e r space -+ where x(q,w) iç t h e dens i ty- densi t y response f u n c t i o n g i v e n by The e f f e c t i v e p o t e n t i a l $ ( q ) i s r e l a t e d t o the s t r u c t u r e f a c t o r the F o u r i e r t r a n s f o r m o f g(r) , through the expression The second term o f eq. ( 4 . 8 ) i s r e s p o n s i b l e f o r the l o c a l f i e l d e f f e c t s due t o short- range c o r r e l a t i o n s neglected i n RPA, by s e t t i n g a(;) = $(); i n eq. which ( 4 , 7 ) . I n t h i s sense RPA is is recovered a trivial s p e c i a l case o f the SCFA. As before, the f l u c t u a t i o n - d i s s i p a t i o n theorem (eq. (2.13)) and Krarners-Kr&-iig r e l a t i o n p u t together a l l o w us t o w r i t e the density- - d e n s i t y response f u n c t i o n a t zero frequency as so t h a t the s t r u c t u r e f a c t o r t u r n s o u t t o be This completes the SCFA scheme. The equations ( 4 . 2 ) - and have t o be so l v e d numer i c a l l y i n a s e l f - c o n s i s t e n t way. From 208 (4.4) ~ ( q ) t,h e Revista Brasileira de Flsica, Vol. 16, nQ 2, 1986 p a i r c o r r e l a t i o n can be evaluated s i m p l y by a F o u r i e r t r a n s f o r n i a t i o n o p e r a t ion. For the e l e c t r o n gas on bulk h e l ium, we t h e s e l f - c o n s i s t e n t equations i n a s i m i l a r way t o the cain wri te 3D c l a s s i c a l e l e c - t r o n .plasma, i .e. where G ( ~ )i s the l o c a l f í e l d f u n c t i o n d e f ined by t h e r e l a t i o n such t h a t where K ( x ) and E(x) a r e the complete e l l i p t i c i n t e g r a l s o f the F i r s t and second k i n d r e s p e c t i v e l y . The s e l f - c o n s i s t e n t s o l u t i o n i s o b t a i n e d by the s tandard method of i t e r a t i o n . W i t h a reasonable i n p u t ~ ( q ) , t h e e f f e c t i v e p o t e n t i a l $ @ i s calculateci and from i t a new ~ ( q i)s obtained. The procedure i s re- peated u n t i l s e l f - c o n s i s t e n c y i n ~ ( 4 i)s achieved. For the b u l k helium case the p a i r c o r r e l a t i o n f u n c t i o n i s p l o t t e d i n f i g . 4 f o r severa1 values o f t h e plasma parameter r. The r e s u l t s agree s a t i s f a c t o r i l y w i t h those o b t a i n e d from Monte C a r l o ~ i m u l a t i o n s ~ ~ . Note t h a t , c o n t r a r y t o RPA r e s u l t s , our g(r) i s p o s i t i v e f o r a r a t ions a111 s e p - . The i n f l u e n c e o f t h e f i l m t h i c k n e s s on the self- consistent s t r u c t u r e f a c t o r f o r two d i f f e r e n t s u b s t r a t e s (metal and glass) i s s h w n i n f i g . 5 and 6. I n these f i g u r e s , the f i l m thickness i s i n u n i t s o f the -112 core radius a = (m) . For d > 100, S ( q ) i s independent of the n a t u r e o f the s u b s t r a t e and s i m i l a r t o t h a t o f the s t r i c t l y 2D electron gas. Revista Brasileira de Flsica, Vol. 16, n? 2, 1986 - Fig. 4 P a i r c o r r e l a t i o n f u n c t i n g ( r ) as a f u n c t i o n o f r i n u n i t s o f (m)-f o r s e v e r a l values o f t h e p l a s m a parameter, Thepoints a r e the Monte C a r l o r e s u l t s . !h For 1 < d < 100, the d i f f e r e n c e s i n ~ ( 4 f) o r the two substrates are found o n l y f o r smal 1 4. From S(q) obtained s e l f - c o n s i s t e n t l y , the c o r r e l a t i o n energy can be evaluated as I n f i g . 7, we present the r e s u l t s f o r the correlat ion energy d e n s i t y E /nT as a f u n c t i o n o f the f i l m thickness f o r a meta 1 substrate. C Revista Brasileira de Física, Vol. 16, n? 2, 1986 - Fig. 5 S t r u c t u r e f a c t o r s ( ~ i )n b o t h Self- Consistent- Field- Approxima t i o n (SCFA) and Random-Phase- Approxima t i o n (RPA) f o r severa1 values o f t h e f i l m thickness (di = 0.01, d2 = 0.1,d3=1.0, and d,, = 100) and plasma parameteri' =3, f o r a metal s u b s t r a t e . de = The v a l u e 100 i s o u r e s t i m a t e o f t h e c r i t i c a 1 t h i c k n e s s , above which the r e s u l t s t u r n o u t t o be the same as i n the b u l k h e l i u m case. From the poles o f t h e densi ty-dens i t y response f u n c t i on, can g e t the d i s p e r s i o n r e l a t i o n f o r the plasmons. I n the long one wave- l e n g t h l i m i t and f o r weak damping, I n f i g . 8, we show the r e s u l t s o f the plasma d i s p e r s i o n r e lation for r = 3 and a metal s u b s t r a t e . I n the l i m i t o f t h i n f i l m s , we Revista Brasileira de Flsica, Vol. 16, n? 2, 1986 - Fig.6 S t r u c t u r e f a c t o r s($) f o r a glass s u b s t r a t e . T h e p a r arneters a r e t h e same as those i n f i g . 5. observe an unusual a c o u s t i c a l rnode w P where c, = (a121 'I2 9 Here a = s-S(O&S(O) i s the a t i o n o f the constant S(q) and velocity. = cq w i t h v = (2T/m)'/' T f ractional i s the thermal devi- e1 e c t r o n I n R P A ~ ' , aRpA = =&/E. I n c r e a s i n g the f i l m thickness, the long range interactioncomes t o be q u i t e important u n t i l t h e b u l k l i m i t i s reached, w i t h where y = (1/4im)< cik -range e f f e c t s . [ s ( k ) - ~ J i s the c o r r e c t i o n t o RPA due t o short- Revista Brasileira de Flsica, Vol. 16, no 2, 1986 THICKNESS (d/a) - Fig. 7 C o r r e i a t i o n energy d e n s i t y g c h T as a f u n c t i o n o f thickness f o r a metal s u b s t r a t e and = 3 . The l i n e i s a guide t o t h e eye. Note t h a t the assymptotic l i m i t corresponds t o t h e b u l k l imit. r - Fig.8 Long-wavelength d i s p e r s i o n r e l a t i o n curves i n u n i t s a o f w, = (2.rrne2kD/m)''2 f o r metal s u b s t r a t e . The dashed l i n e s a r e the r e s u l t s from RPA. The parameters are the (,ame as those o f f i g . 5. Observe t h e t r a n s i t i o n from an a c o u s t i c a l mode t o an usual 2D plasmon. Revista Brasileira de F isica, Vol. 16, no 2, 1986 5. POLARONIC EFFECTS s ec t i o n s The quantum e l e c t r o n i c s t a t e s described i n previous a r e formed by assuming a p l a n a r l i q u i d boundary. H o w e v e r , a p e r t u r b a t i o n o f the s u r f a c e p r o f i l e , due t o the presence o f the normal modes o f os- c i l l a t i o n o f the l i q u i d surface, m o d i f i e s the form o f the wave e q u a t i o n [eq. (2.20 governing the motion o f e l e c t r o n s . We w i l l d e s c r i b e now the e l e c t r o n i n t e r a c t i o n w i t h these e x c i t a t i o n s , c a l l e d r i p p l o n s , which a r e the quantized c a p i l l a r y - g r a v i t y waves o f t h e helium s u r f a c e . F i r s t , we consider a s i n g l e e l e c t r o n p i c t u r e f o r the e l e c t r o n - r i p p l o n c o u p l i n g , d i s r e g a r d i n g the e l e c t r o n - e l e c t r o n i n t e r a c t i o n , L a t e r , the Coulornb i n - t e r a c t i o n between l o c a l i z e d e l e c t r o n s over the deformed s u r f a c e w i l l be introduced. The r i p p l o n s a r e bosons w i t h a d i s p e r s i o n g i v e n by u2 r = [g'q + (5.1) ( õ / ~ ) 4 ~tanh ] qd where q i s the r i p p l o n wave v e c t o r , a the s u r f a c e tension, p the d e n s i t y o f l i q u i d helium. The van der Waals a c c e l e r a t i o n g' = g+f, where g the a c c e l e r a t i o n o f g r a v i t y and f = 3a/pd4, w i t h a the Waals van constant responsible f o r the a t t r a c t i v e forces exerted on der the h e 1 i um atom from the s i d e o f the s u b s t r a t e . I n terms o f the r i p p l o n c r e a t i o n and a n n i h i l a t i o n o p e r a t o r and a 4' is + a + 4 the displacement o f the helium s u r f a c e u(r) can be w r i t t e n as where ,4I2 = (hq tanh qd)/2wr The treatment of e l e c t r o n - r i p p l o n s c a t t e r i n g based on the Born -0ppenheimer a d i a b a t i c p r i n c i p l e , which takes i n t o account the adjust- ment o f the e l e c t r o n i c s t a t e s to' the long wavelength o s c i l l a t i o n o f the l i q u i d , has been discussed i n d e t a i 1 by S h i k i n and ~ o n a r k h a ~ ' . The e l e c t r o n - r i p p l o n i r i t e r a c t i o n p o t e n t i a l can be w r i t t e n in Revista Brasileira de Flsica, Vol. 16, no 2, 1986 the following form V (z) = 4 A E-&e2/z2 + &e24~,(qz)/z + &,e2/(z+d) 4 + eFI - and Kl(z) is the modified Bessel function of second kind. At (5.4) low tem- perature and high externa1 electric fields, the electron-ripplon interaction can induce a self-localized electronic surface state. l'he electron deforms the hel ium surface forming a smal 1 dimple i n wti i ch i t localizes itself3lS3'. This electron-ripplon bound complex is cal led a polaron. In the long wavelength 1 imi t where experiments have been performed, the motions parallel and perpendicular to the surface can be separated, and the polaron is described by a Frohlich type Hamilton ian The path-integral formalism, as introduced by Feynman for the polaron problem, was first worked out by ar ias^^ and later by HipÕlito et aZ34 in order to evaluate the ground-state energy and effective mass of the polaron, The appl ication of the Feynman theory to this specific problem was motivated by the fact that Feynman's treatment isthemost successful overall theory of the optical polaron, giving the lowest upper bound to the ground state energy, In this method, the ripplon coord inates are exactly eliminated in favor of a non-linear retarded interaction of the electron with itself, The physical meaning of this interaction with the past is that the perturbation caused by the moving electron spend time to propagate in the medium. Revista Brasileira de Física, Vol. 16, n? 2, 1986 The path i n t e g r a l a r i s e s i n t h e c a l c u l a t i o n o f the propagator ( o r the p a r t i t i o n f u n c t i o n f o r f i n i t e temperature) which i s the p r o b a b i l i t y amplitude f o r the dynamical e v o l u t i o n o f the system, I f we know IK, the e i g e n v a l u e s a n d e i g e n f u n c t i o n s o f the Hamiltonian would be, i n p r i n c i p l e , determined. I f we l e t t h e " time" 6- where E i s the ground s t a t e energy. g The a c t i o n S, corresponding t o the p o l a r o n Hamiltonian, is g i v e n by Obviously the f u n c t i o n a l i n t e g r a l , b e i n g i n t r a c t a b l e , replaced by a simple e x a c t l y s o l u b l e f u n c t i o n a l S,, The use o f must be Jensen's inequality F <F> < e > ? e a1 lows us t o o b t a i n a v a r i a t i o n a l upper bound on the ground s t a t e ene so where E , = l o g J &(.r)e . and <. ,> means average wi t h w e i g t h e+so, Feynman was a b l e t o choose a model t o c a l c u l a t e S, which con t a i ns the p h y s i c a l s i g n i f i c a n c e o f the t r u e a c t i o n S . I n t h i s model, the s o - c a l l e d two-parameter model , i n s t e a d o f the e l e c t r o n being coupled t o t h e normal modes o f the medium, i t i n t e r a c t s w i t h a s i n g l e f i c t i t i o u s particle via a s p r i n g , and the p a i r o f p a r t i c l e s are f r e e t o wander, The mass o f the Revista Brasileira de Flsica, Vol. 16, no 2, 1986 e x t r a p a r t i c l e and the s p r i n g constant a r e the v a r i a t i o n a l parameters. A f t e r e l i m i n a t i n g the coordinates o f the f i c t i t i o u s p a r t i c l e s , the t r i a l a c t i o n assumes the form For o u r s p e c i f i c e l e c t r o n - r i p p l o n complex, where F(u) = v2-Q2 7 ( and 0 i s d e f i n e d i n terms o f the v a r i a t i o n a l paraméter C and Q as The v a r i a t i o n a l parameters and C a r e determinedby m i n i m i z i n g the express i o n f o r t h e energy. The numeri c a l c a l c u l a t i o n s f o r tbie ground s t a t e energy Óf the p o l a r o n f o r f i l m s on a metal a r e s k w n i n f i g . 9 , as a f u n c t i o n o f t h e f i lm thickness and f o r two values o f the externa1 e l e c t r i c f i e l d , The energies f o r f i l m s deposited on o t h e r s u b s t r a t i s s w e r e a l s o c a l c u l a t e d and the r e s u l t i s t h a t the i n f l u e n c e o f t h e s u b s t r a t e i s significant only f o r d o r d e r o f 50 8 < 500 8. When the f i l m thickness the c o n t r i b u t i o n o f the s u b s t r a t e t o t h e ts of electric: t o t a l l y dominates the e x t e r n a l e l e c t r i c f i e l d , The main r e s u l t i s i n t h e l i m i t o f zero e x t e r n a l e l e c t r i c f i e l d @=O), the p o l a r o n the field that energy i n a metal s u b s t r a t e i s g r e a t e r than i n any o t h e r s u b s t r a t e . S i m i l a r c a l c u l a t i o n s have been made by Jackson and Platzman f o r one p a r t i c u l a r thickness o f the f i l m (d = 100 8 ) . I n o r d e r to get a n a l i t y c a l r e s u l t s i n the s t r o n g c o u p l i n g and weak c o u p l i n g l i m i t s they introduced a c u t o f f kC = ( p g ' / ~ ) 1 / 2 (a being t h e c a p i l l a r y constant), i n the e l e c t r o n - r i p p l o n i n t e r a c t i o n and approximated the r i p p l o n d i s p e r s i o n [eq,(5.1)] by a sound l i k e d i s p e r s i o n f o r q c kc, They found a phase- - t r a n s i t i o n l i k e behavior from an e l e c t r o n i c d e l o c a l i z e d state to a Revista Brasileira de Flsica, Vol. 16, n? 2, 1986 - Fig.9 Local i z a t í o n energy o f an e l e c t r o n as f u n c t i o n o f t h e thickness o f the helium f i l m on m e t a l l i c s u b s t r a t e . S o l i d and dashed curves correspond and t o F = 20.0 x ] o 3 V/cm 5 . 0 x l o 3 V/cm. s e l f - t r a p p e d one a t a c r i t i c a l v a l u e o f the e l e c t r o n - r i p p l o n c o u p l i n g constant. T h i s " l o c a l i z a t i o n " t r a n s i t i o n r e f e r e d here i s n o t t o be taken l i t e r a l l y , b u t r a t h e r i n terms o f the r a p i d i t y and m a g n i t u d e of change of the e f f e c t i v e mass o f the polaron over a narrow range the o f the coupl i n g constant. Our numerical c a l c u l a t i o n s u s i n g the p a t h - i n t e g r a 1 formal ism were performed i n terms o f experimental access i b l e v a r i a b l e s , the externa1 e l e c t r i c f i e l d and f i l m thickness, and do n o t the i n c l u d e any k i n d of approximation i n the e l e c t r o n - r i p p l o n i n t e r a c t i o n o r ripplon dispersion. The p r o p e r t i e s of t h i s p o l a r o n i n h i g h magnetic f i e l d havebeen Revista Brasileira de Flsica, Vol. 16. no 2. 1986 i n v e s t i g a t e d by Sai toh wi t h the use o f p a t h - i n t e g r a l ~ n e t h o d s ~ ~ . Very r e c e n t l y Degani and H i p ó l i t o 3 7 have s t u d i e d i n d e t a i 1 t h e ground s t a t e p r o p e r t i e s w i t h emphasis on t h i s nove1 and i n t e r e s t i n g pol a r o n i c phase t r a n s i t i o n . They used a s imple u n i t a r y - t r a n s f o r m a t i o n f o r rnalism, based on a g e n e r a l i z a t i o n o f the v a r i a t i o n a l a p p r o x i m c i t i o n o f Lee, Low and Pines, which was p r e v i o u s l y a p p l i e d t o t h e s t u d y o f the s v r f a c e p o l a r o n by de Bodas and t i i p ó l i t o 3 ' , The advantage o f t h i s method i s the g r e a t f l e x i b i l i t y f o r a p p l i c a t i o n s t o Hamiltonians (5.5) w i t h severa1 k i n d s o f i n t e r a c t i c n p o t e n t i a l and similar to appropriate dis- p e r s i o n r e l a t i o n , I t was demonstrated t h a t t h i s approximation gives t h e same r e s u l t s as Feynman's formalism i n s t r o n g - c o u p l i n g and weak-coupling l i m i t s f o r o t h e r types o f polarons. Furthermore, t h i s u n i t a r y - t r a n s f o r mation method has been used i n the study o f t h e p o l a r o n phase t r a n s i t i o n For t h e e l e c t r o n - r i p p l o n ground s t a t e , t h e v a r i a t i o n a l function I$> wave- i s p o s t u l a t e d as a product o f an e l e c t r o n wavefunction and a coherent r i p p l o n s t a t e , T h i s s u r f a c e s t a t e i s n o t an e i g e n s t a t e o f + the t o t a l para1 l e l momentum o p e r a t o r p t' + where p i s the e l e c t r o n momentum. The m i n i m i z a t i o n o f t h e energy should be performed t r a i n i n g the o p e r a t o r where -+ t by cons- so t h a t i s t h e Lagrange m u l t i p i i e r (which ends up as the p o l a r o n v e l - o c i t y ) introduced t o keep the e x p e c t a t i o n v a l u e o f the t o t a l mornentum equal t o a g i v e n c o n s t a n t , The method c o n s i s t s f i r s t i n s u b j e c t i n g H =H + -+ - p , pt t o a canonical t r a n s f o r m a t i o n S I , SI = e x p ( - i n 1 +q,r+ a+9 a9 ) , + the Hami I t o n i a n (5.18) c where i s a v a r i a t i o n a l parameter whi ch recovers the weak-coupl i ng ap- Revista Brasileira de Flsica, Vol. 16, no 2, 1986 p r o x i m a t i o n as n=1 and g i v e s the s t r o n g - c o u p l i n g theory i n q + the l i m i t o. Next the e x p e c t a t i o n v a l u e o f the r e s u l t i n g H a m i l t o n i a n i s c a l - c u l a t e d by choosing a v a r i a t i o n a l wave f u n c t i o n w i t h the f o l l o w i n g form where 10> i s the r i p p i o n ground- state wave f u n c t i o n , 1 a ( O >= O o b t a i ned + f rom and <O O > = ] , h and p , a r e v a r i a t i o n a l parameters and S2 4 i s t h e well-knownI second Lee-Low-Pines canonical t r a n s f o r m a t i o n given by S, = exp [ 1 (La i - L aq)I 4 9 4 and F s i s a v a r i a t i o n a l f u n c t i o n t o be determined, 4 M i n i m i z i n g the energy w i t h respect t o the + ametersh and p , , up t o second o r d e r i n the v e l o c i t y variat ional + p, we f i n a l l y parob- t a i n the expressions f o r the ground- stete energy and e f f e c t i v e mass given T h i s c a l c u l a t i o n f o r m a l l y reproduces the p a t h - i n t e g r a l r e s u l t s provided one introduces t h e upper c u t - o f f kc = g r a t i o n over q i n eq. JpgSríi int8 the (5,131, By analogy w i t h t h e p o l a r o n problem we d e f i n e a c o u p l i n g s t a n t a as intecon- Revista Brasileira de Física, Vol. 16, n? 2, 1986 where FT =F + & , e / d 2 . I n the weak-coupl i n g approximation and r~= 1. I n t h i s l i m i t i t i s c l e a r from eq. E 9 (5.17) i!; a smal 1 t h a t a minimum of occurs a t X = O . Then, f o r the energy and e f f e c t i v e mass we o b t a i n =-2ya , y=%m/hkc mx/m (5.23a) 1 (5.23b) I n t h e s t r o n g - c o u p l i n g l i m i t , corresponding t o l a r g e values of a, r l + O , t h e energy behaves l i k e and the e f f e c t i v e mass goes l i k e I n general, t h e energy, d e f i n e d i n eq. w i t h respect t o t h e v a r i a t i o n a l parameters X and (5.17), n. is miriimized Hence, w i t h the best effec- - f i t values of those parameters t h e ground- state energy and t h e t i v e mass a r e obtained. I n f i g s . 10 and 1 1 the r e s u l t s are plotted a g a i n s t the externa1 e l e c t r i c f i e l d f o r v a r i o u s values o f t h e ttiickness o f the helium f i l m adsorbed i n s o l i d neon (and k C = 1.45 109/d2 As we see from f i g . 10, f o r each thickness o f t h e helium l a y e r cm-'1. the en- ergy has two d i s t i n c t branches corresponding t o the s t a b l e s o l u t i o n s o f eq. (5.21). The f i r s t branch, r e p r e s e n t i n g the w e a k - c o u p l i ng ( 0 = 1) regime, crosses the second one which corresponds t o the strong-coupl ing, a t a c e r t a i n c r i t i c a 1 v a l u e o f t h e clamping e l e c t r i c f i e l d Fc, A t t h i s the en- c r o s s i n g p o i n t t h e r e i s a discontinuous change i n t h e slope o f ergy, c h a r a c t e r i z i n g a f i r s t - o r d e r p h a s e - t r a n s i t i o n s behavior i n which the p o l a r o n s t a t e transforms from a n e a r l y - f r e e t o a l o c a l i z e d s t a t e type. The extremely r a p i d v a r i a t i o n a t the c r i t i c a 1 p o i n t i s more m a t i c a l l y seen i n f i g . 11, where t h e e f f e c t i v e mass, i n units of drathe e l e c t r o n mass, changes by severa1 orders o f magnitude. ~ t o corrobRecent experimental measurements by ~ n d r e i 'appear o r a t e t h i s t h e o r e t i c a l p r e d i c t i o n by observing the l o c a l i z a t i o n o f the Revista Brasileira de Flsica, Vol. 16, n? 2, 1986 1o-' L ELECTRIC FIELD (VOLT/ cm) - F i g , 10 Ground-state energy as f u n c t i o n o f the clamping externa1 f i e l d f o r t h r e e values o f the f i l m thickness i n t h e case where the s u b s t r a t e i s s o l i d neon ( E = 1.24). P o i n t s a r e numer i c a 1 r e s u l t s and 1 ings a r e o n l y guides t o the eye. e l e c t r o n as a p o l a r o n i c s t a t e f o r d í: 1000 8 and 0.4 < T < 1 K. I n her experiments Andrei makes measurements o f the m o b i l i t y and e f f e c t i v e m a s s o f e l e c t r o n s on a h e l ;um f i l m , She found t h a t a t c e r t a i n c r i t i c a l p o i n t 1 a sharp b1 o r d e r o f magnitude drop i n t h e m o b i l i t y occurs, The e l e c t r o n i c e f f e c t i v e mass on the o t h e r hand increases by 8 orders mag- of n i tude, c h a r a c t e r i z i n g t h e o b s e r v a t i o n f o r the f i r s t time, of t h e t r a n s i t i o n t o a s u r f a c e polaron s t a t e as p r e d i c t e d Dy a singl e electron t h e o r y , Although t h e experimental measurements support the basic p o l a r o n model ideas, many e l e c t r o n s a r e present i n the experimental situation, suggesting t h a t Coulomb i n t e r a c t i o n between e l e c t r o n s p l a y s a n important r o l e , i n t r o d u c i n g then a new s c a l e o f energy i n t o t h e problem p o l a r o n s t a t e , w i t h b i n d i n g energy o f the o r d e r o f m i l i k e l v i n s , (the as we Revista Brasileira de F lsica, Vol. 16, n? 2, 1986 106 I I - I I I helium films 104- I d=100A I I I I I I I I I I I I I I I I !I I I I I I I k&-- -*;*- t I I 1.0 IO* I I I I I I- I I I I to2- I I I I - I 1 A & - , 103 io4 105 ELECTRIC FIEL0 (VOLT /cm) ioEi - Fig.11 E f f e c t i v e mass i n u n i t s o f the f r e e e l e c t r o n mass as f u n c t i o n o f t h e e x t e r n a l e l e c t r i c f i e l d f o r t h r e e values o f the f i l m thickness i n the case where t h e s u b s t r a t e i s s o l i d neon. P o i n t s a r e numerical r e s u l t s and l ines a r e guides t o the eye. have c a l c u l a t e d before, i s f a r t o o low t o be observable a t mental temperatures 0.4 K < the e x p e r i - T C 1 K). With many e l e c t r o n s present, an i n s t a b i l i t y o f t h e chasged he- l ium s u r f a c e can be generated by forming separate many-electron dimples w i t h i n an energy s c a l e which might a l l o w e x p e r i m e n t a l observation. W i t h i n the c o n t e x t o f A n d r e i ' s experiment, we now describe t h e proper- t i e s o f an i n d i v i d u a l dimple f i l l e d w i t h severa1 e l e c t r o n s ( N 40 - 90) trapped a t the s u r f a c e o f a h e l ium f i l m adsorbed on s o l i d sapphi re3'. Since t h e e f f e c t i v e charge o f the dimple (Ne) and the niass ( ~ m ) a r e l a r g e , the p o l a r o n c o u p l i n g constant a becames p r o p o r t i o n a l t o f i f t h power o f the number o f e l e c t r o n s N. I n t h i s case, the polaron the is s t r o n g l y bound t o the s u r f a c e even a t zero e x t e r n a l p r e s s i n g e l e c t r i c f i e l d . Thus, from the s t r o n g - c o u p l i n g regime o f our model, we t a i n the t o t a l energy E 9 can ob- associated w i t h a many- electron dimple, j u s t b y adding t o t h e o n e - p a r t i c l e energy g i v e n by eq. (5.21) w i t h = O the Revista Brasileira de Flsica, Vol. 16, n? 2, 1986 energy o f the Coulomb i n t e r a c t i o n Uc between e l e c t r o n s i n s i d e thedimplc The t o t a l energy i s then s t r a i g h t f o r w a r d e v a l u a t e d a n d , i n u n i t s o f h2k:/2~, has the f o l lowi ng form B 9 where EZ(X) = a exp( /A)E<(-l/A) i s the Exponentia + %(A) I n t e g r a l f u n c t i o n and Also, M = Nm i s the dimple mass, and $ ( r ) i s g i v e n by eq. (5.19). M i n i m i z i n g t h e ground s t a t e energy, g i v e n by eq. (5.25), with respect t o h we f i n a l l y f i n d the t o t a l energy o f the system and the Coulomb i n t e r a c t i o n energy UC = (N~F~ 2 /) 4 ~ a which i s o f the o r d e r o f magnitude o f K e l v i n s . From eq. (5.27) we conclude t h a t f o r a simp l e d i m p l e e n e r g e t i c a l l y advantageous ( w i t h E- < o f the h e l ium f i l m i f F'T > 15.14 Y O) i t is t o be loca 1 i z e d a t the s u r f a c e akc. For b u l k h e l ium (d*) mum externa1 f i e l d necessary t o l o c a l i z e a dimple i s Fc = the m i n i - 3120 V/cm, which i s c o n s i s t e n t w i t h the experimental o b s e r v a t i o n o f L e i d e r e r e t a~.'+'. I n f i g . 12 we show t h e r e s u l t s f o r the t o t a l energy, g i v e n eq. (5.27), as f u n c t i o n o f t h e h e l i u m f i l m thickness, f o r F = 80 and f o r severa1 values of the number o f e l e c t r o n s i n s i d e the N o t i c e t h a t , f o r each number o f e l e c t r o n s i n the dimple, there by V/cm d impl e. is a c r i t i c a 1 thickness o f the h e l i u m f i l m above which the e n e r g y becomes the dimple can n o t e x i s t i n a s t a b l e form. The p o s i t i v e , and therefore, c r i t e r i o n f o r t h e s t a b i l i t y o f the charged s u r f a c e i s , on t h e otherhand, r e l a t e d t o the average d e n s i t y o f charges above t h e s u r f a c e , There i s a c r i t i c a 1 concentration n C o f charges, Revista Brasileira de Flsica, Vol. 16, n? 2, 1986 (0) N-40 II ) N a 5 0 ( 2 ) N.60 13) N a 7 0 14) N - 8 0 ( 5 ) N.90 F = 8OV/crn - F i g . 12 Bi nding energy o f a s i n g l e dimple f i l l e d wi t h N elect r o n s as f u n c t i o n o f the h e l i u m f i l m thickness f o r a n e l e c t r i c f i e l d F = 80 V/cm, The d a s h e d p a r t o f each curve corresponds t o an u n s t a b l e s o l u t i o n where the is average e l e c t r o n d e n s i t y l a r g e r than the c r i t i c a 1 d e n s i t y n Th e s o l i d curves rspresent th% f i l m thickness regions where the dimple i s s t a b l e . Tht: shaded reg i o n corresponds t o Andrei ' s experimental r e g i o n (n = '10' crn") where a dimple w i t h more than 40 e l e c t r o n s can be forrned. . FILM THICKNESS (10 %I above which the dimple i s n o t s t a b l e . For n = n . C the surface becomes unstable á t a wave v e c t o r kc = (3g1/o) l l 2 / d 2 I n f i g . 13, the d e n s i t y n i s p l o t t e d as a f u n c t i o n o f f i l m thickness, c r i t i c a 1 d e n s i t y nc and the experimental c o n c e n t r a t i o n n = 108 r e c e n t l y used by ~ n d r e14. i I t i s c l e a r from our r e s u l t s t h a t the appearance o f a s t a b l e maiiy-elect r o n dimple i s l i m i t e d by f i l m thickness as w e l l as by densi'ty above the surface. From f i g . 13, we note t h a t , a t the e l e c t r o n experimental d e n s i t i e s , o n l y dimples w i t h more than N = 40 e l e c t r o n s can be formed on the s u r f a c e o f the helium f i l m . We can a l ç o see the r a p i d i n c r e a s e o f the d e n s i t y w i t h decreasing c r i t i c a l t h i c k n e s s . C o n s e q u e n t l y , a t smaller thickness the e l e c t r o n s become more concentrated a t the c e n t e r of the Revista Brasileira de Física, Vol. 16, n9 2, 1986 i06 1 , O 40 80 120 160 FILM THICKNESS (10A I - Fig.13 Average e l e c t r o n d e n s i t y o f a s i n g l e dimple as f u n c t i o n o f t h e film thickness f o r an externa1 e l e c t r i c f i e 1 d F = 80 V/m, The curves a r e described i n the same way as i n f i g , 12. dimple and the whole s t r u c t u r e o f the dimple becornes sharper, as can be seen d i r e c t l y from the average r a d i u s R o f t h e m u l t i - e l e c t r o n dimple F i n a l l y , we can v e r i f y from eqs. (5.27) and (5.30) e x i s t e n c e of a s t a b l e m u l t i - e l e c t r o n dimple i s p o s s i b l e under that the the con- d i t i o n kcR 5 1/2. This means t h a t the s i z e o f the r e g i o n c o n t a i n i n g the Revista Brasileira de Física, Vol. 16, n'? 2, 1 9 8 6 - 0.0 - Fig. 14 The phase diagram f o r b u l k h e l ium and f o r a c? = 100 8 f i l m l y i n g on t w o s u b s t r a t e s (sapphire 6=0.9 and metal A = ] ) . n, = 2.4 x 1012 c K 2 and T,=33 K. ( A f t e r Peeters and Platzman r e f . 41). 0.0 0.1 0.2 03 0.4 TENPERATURE I T/ TcIm)) 05 e l e c t r o n s i s s m a l l e r than a t y p i c a l r i p p l o n wavelength, j u s t i l ' y i n g the v a l i d i t y o f our model c a l c u l a t i o n . 6. THE PHASE-DIAGRAM Very r e c e n t l y , the phase diagram o f e l e c t r o n s on helium f i l m s has been i n v e s t i g a t e d 3 ' . As we have discussed i n s e c t i o n 2, f e a t u r e o f the behavior o f these s u r f a c e e l e c t r o n s i s the a striking possibility t h a t they can undergo a phase t r a n s i t i o n from a l i q u i d phase t o an or- dered s t a t e as one increases the densi t y o r lowers the temperature for r. This a f i x e d density, i.e., f o r l a r g e values o f the plasma parameter c l a s s i c a l f r e e z i n g t r a n s i t i o n has been observed f o r e l e c t r o n s on bulk h e l ium17. The mechanism o f t h i s t r a n s i t i o n has been proposed i n a semina1 paper o f K o s t e r l i t z and Thouless ( K T ) ~and ~ l a t e r e l a b o r a t e d on by H a l p e r i n and Nelson ( H N ) ~ This ~ . c l a s s i c a l t r a n s i t i o n occurs by unbinding o f dislocation pairs a t rm t o a new phase, a l i q u i d - c r y s t a l phase, w i t h no long-range t r a n s l a t i o n a l o r d e r b u t w i t h bond o r i e n t a t i o n a l o r d e r . At r = ri the system undergoes another transi tion by unbinding of Revista Brasileira de Física, Vol. 16, no 2, 1986 d i s c l i n a t i o n p a i r s t o the usual l i q u i d w i t h no long o r d e r . The v a l u e o f 'I m i s given, i n the contex o f KTHN theory as where c t and cR a r e the t r a n s v e r s a l and l o n g i t u d i n a l sound v e l o c i t y o f the s o l i d , These constants must be renormalized by t a k i n g i n t o account the e f f e c t s o f c r e a t i o n o f d e f e c t s i n the s o l i d . Using zero temperature r, - values o f ct and cL, ~ h o u l e s sfound ~ ~ out a transition a t 79. More r e f i n e d numerical c a l c u l a t i o n s by ~ o r f " , who solved the r e n o r m a l i z a t i o n group equations o f HN, r a i s e the m e l t i n g t r a n s i t i o n t o r - 125 which i s c o n s i s t e n t w i t h t h e experimental r e s u l t . On t h e o t h e r hand, t h e r e i s a r e g i o n o f the phase diagramkhere the Fermi energy i s l a r g e r than the thermal energy, EF >> T , i.e., a low temperature phase where the Fermi energy dominates the k i n e t i c s o f the e l e c t r o n system. This r e g i o n cannot be reached e x p e r i m e n t a l l y f o r e l e c t r o n s b u l k h e l ium, because an dectrohydrodynamic i n s t a b i l i t y o f on the charged surface occurs. T h i s i n s t a b i l i t y a r i s e s when one c o n s i d e r s t h e i n f l u e n c e of the e l e c t r o n s on the d i s p e r s i o n r e l a t i o n o f r i p p l o n s . I t i s expected t h a t the frequency o f r i p p l o n s w i t h a wave v e c t o r around k ( t h e i n v e r s e C o f the c a p p i l a r y l e n g t h ) i s considerably lowered as the e l e c t r o n den- n > nc ' the frequency becomes imaginary, For suggesting t h a t the surface becomes u n s t a b l e a g a i n s t deformations. s i t y i s increased. lndeed, f o r b u l k h e i ium nc = (ogp) "*/(2ne2)"* = 10' cm-' . However, for elec- trons on h e l i u m f i l m s , t h e van der Waals helium- substrate i n t e r a c t i o n i s incorporated i n t h e d i s p e r s i o n r e l a t i o n o f r i p p l o n s and drastically increases the c r i t i c a l densi t y nc. Remember t h a t , i n t h i s case the g, g r a v i t a t i o n a l constant, i s replaced by g = 3 d p d 4 . For t h i n f i l m s n C given by eq. (5.29). is So, the quantum r e g i o n o f the phase diagram can be achieved f o r e l e c t r o n s on t h i n h e l i u m f i l m s . Indeed, a recent imenth6 has demonstrated t h a t e l e c t r o n densi t i e s up t o 10" exper- cm-2 above s a t u r a t e d f i l m s on b o t h i n s u l a t i n g and conducting s u b s t r a t e s a r e s t a b l e . Revista Brasileira de Física, Vol. 16, n? 2, 1986 Peeters and ~ l a t z m a nhave ~ ~ proposed a phase diagram o f e l e c t r o n s on helium f i l m s by u s i n g a simple dimensional argument and KTHN theory. Accordi ng t o them, the r e l a t i o n must h o l d i n the gas phase, where eq. (3.5). i s the p o t e n t i a l energy g i v e n by Now, t h e eq. (6. I ) t u r n s o u t t o be where c t ( d ) and cR(d) a r e the zero- temperature sound v e l o c i t i e s in s o l i d formed by p a r t i c l e s i n t e r a c t i n g v i a a p o t e n t i a l $d, and I'm(-) a is taken as the experimental r e s u l t f o r e l e c t r o n s on b u l k helium.The phase diagram i s d i s p l a y e d i n f i g . 14. These a r e q u a l i t a t i v e r e s u l t s , because they must take i n t o account the values o f sound v e l o c i t i e s temperature, where the r e n o r m a l i z a t i o n e f f e c t s i n these at finite consta~nts a r e q u i t e important. One important c o n c l u s i o n i s t h a t f o r a metal s u b s t r a t e one f i n d s a f l u i d - l i k e r e g i o n as n ness.Athighdensities -+ O and T -+ O f o r small thesolidmeltsagainatadensity fitin thickwhere n t] the quantum t r a n s i t i o n occurs. These densi t i e s depend upon d ir1 such way t h a t f o r d - 70 8, the s o l i d r e g i o n s h r i n k s t o a p o i n t . T h i s i s e f f e c t o f t h e d i p o l a r i n t e r a c t i o n a t small f i l m thickness. It is i n t e r e s t i n g t o analyse t h e quantum p r o p e r t i e s o f a d i p o l e gas o f a an very elec- t r o n s which, now, has a p h y s i c a l experimental r e a l i z a t i o n . The study o f t h i s system i s i n p r o g r e s s 4 7 . Most o f the work d e s c r i bed here has been done i n c01 l a b o r a t i o n with G.A. F a r i a s , J.P. Rino, J.R. Drugowich de F e l í c i o and M. Degani. We would l i k e t o acknowledge them f o r v a l u a b l e discussions and f r i e n d l y cooperation. We would l i k e t o thank S.A. J a c k s o n and M . h e l p f u l discussions on t h e p o l a r o n i c s t a t e and E.A. Andrei Sai toh for f o r conver- Revista Brasileira de Flsica, Vol. 16, n? 2, 1986 s a t i o n s a b o u t h e r b e a u t i f u l e x p e r i m e n t . We a l s o thank t o P r o f e s s o r R . C . T. da Costa f o r a c r i t i c a l r e a d i n g o f t h e m a n u s c r i p t . ( ~ r a z1ii a n Govern- T h i s work was s u p p o r t e d by FAPESP and CNPq ment Agencies) . REFERENCES 1. M.W.Cole and M.H.Cohen, 2. V.B. Phys. Rev. L e t t . 23, 1238 (1969). S h i k i n , 2h.Eksp.Teor.Fiz. 1748 (1970) [sov.phys. JETP 31, . 936 (1970)] 3. C.C.Grimes 4. M.W.Cole, 58, and T.R.Brown, Rev,Mod.Phys. 5. C.C.Grimes, Surf.Sci. Phys.Rev.Lett. 32, 280 (1974). 46, 451 ( 1 9 7 6 ) . 73, 379 (1978). 6. V . B . S h i k i n and Yu. P. Monarkha, Fiz.Nizk.Temp. 1, 957 (1975) [ ~ o v . ~ . Low Temp. Phys. 1, 459 (197511 7. Yu. P. Monarkha and V . B . S h i k i n , J.Low Ternp.Phys, 8. F.1 .B. W i l l i a m s , J.Phys. 9 . T.Ando, A.B.Fowler 10. K.S.Singwi, 8, Fiz.Nizk.Temp. [~ov. 563 (1982) 8, 279 (1982)]. ( ~ a r i s )41, Col loques C3-249 (1980). and F.Stern, M.P.Tosi, Rev.Mod.Phys. 54, 437 (1982). R.H.Land and ~ . ~ j 8 l a n d e rPhys. , Rev. 176, 586 ( 1 9 6 8 ) . See a l s o K.S.Singwi and M.P.Tosi i n S o l i d S t . Phys., ~01.36, p. 177, e d i t e d by E h r e n r e i c h and T u r n b u l 1, Academic Press (1981). 11. R.P.Feynman, isticaí! Mechanics, ch. 8, Benjamin (1 972) 12. R. Manka and M . S u f f c z y n s k i , , . C 13, 6369 (1980). Phys. Rev. L e t t . 52, 1449 (1984). See a l s o E . Y . C.C.Grimes and G.Adams, 15. C.C.Grimes, J.Phys. C 12, 4667 (1979). 13. O. ~ i ~ ó l i t oJ.Phys. , 14. E.Y.Andrei Stat- Phys.Rev. 97, 660 (1955). See a l s o R.P.Feynrnan, T.R.Brown, Andrei , S u r f . S c i . 142, 104 (1984). M.L,Burns and C.L.Zipfe1. Phys. Rev. B 13, 140 (1976). 16. 0 . H i p õ l i t o , J.R.D. 365 (1 978) 17. C.C.Grimes de ~ e l í c i oand G.A. F a r i a s , Sol i d S t . Com. 28, . and G.Adams, 18. R.H. M o r f , Phys.Rev,Lett. 19. R.C.Gaan, Phys.Rev.Lett. 42, 795 (1979). 43, 931 (1979). S.Chakravarty and G.V.Chester, Phys, Rev. 820, 326 (1979). Revista Brasileira de Flsica, Vol. 16, n? 2, 1986 20. N. S t u d a r t , PhD. T h e s i s 21. A . L . F e t t e r , - IFQSC/USP (1979) unpubl i s h e d . Phys.Rev. B 10, 3739 (1974). 22. V . B . S h i k i n and Yu.P.Monarkha, 23. A.M.Gabovich, J.Low Temp.Phys. 16, 193 (19'74). L.G. l l 'chenko and E . ~ . ~ a s ht si k i i , Zh.Eksp.Teor. 81, 2063 (1981) [ S O V . P ~ ~ S . J E T P 59, 1089 (1981)) 24. H . l k e z i and P.M.Platzman, Phys.Rev. 823, 1145 (1981). S t a t i c and DynamácaZ B Z e c t r i c i t y p.192 25. W.R.Smythe, Fiz. - Mc-Graw H i l l , New Y o r k (1950). 26. N. S t u d a r t and 0. H i p ó l i t o , Phys. Rev. A 19, 1790 (1979). 27. N. S t u d a r t and 0. H i p õ l i t o , Phys. Rev. A 22, 2860 (1980). 28. J.P. Rino, N. S t u d a r t and 0. H i p õ l i t o , Phys. Rev. B 29, 2584 (1984). 29. H. T o t s u j i , Phys. Rev. A 1 7 , 399 (1978). 30. Yu. P. Monarkha, F i z . N i z k . Temp. 3, 1459 (1977) 702 (1977)] 31. V.B. Phys.3, [SOV.J.LO\,, . S t i i k i n , Zh.Eksp.Teor.Fiz. 60, 713 (1971) [ ~ o v . ~ h ~JETP s. 33, 387 (1971)]. 32. Yu. P. Monarkha, Fiz.Nizk.Temp. 1, 526 (1975) [SOV.J.LOW Timp.Phys. 1, 258 (197511. 33. G.A. G.A. F a r i a s i n PhD T h e s i s , IFQSC/USP (1980) u n p u b l i s h e d . F a r i a s , O. H i p Ó l i t o and N. o f SBPC, R i o , Cienc.Cu1 t.Sup1. 34. 0 . H i p ó l i t o , G.A. See a l s o S t u d a r t , Proc. o f 32 Annual M e e t i n g 3 2 ( 7 ) , 260 (1980). F a r i a s and N. S t u d a r t , S u r f . S c i . 113, 394 (1982). 35. S. Jackson and P.M. Platzman, Phys. Rev. B 24, 499 (1981) and Phys. Rev. B 25, 4886 (1982). 36. M. S a i t o h , S u r f . S c i . 142, 37. M. 114 (1984) and r e f e r e n c e s t h e r e i n . Degani and 0. H i p ó l i t o , S u r f . S c i . 142, 107 (1984). 38, E.L. Bodas and 0. H i p ó l i t o , Phys. Rev. B 27, 6110 (1983). 39. M.H. Degani and 0. H i p ó l i t o , Phys. Rev. B 32, 40. P. L e i d e r e r , W . Ebner, V.B. 41. F.M. P e e t e r s and P.M. See a l ç o F.M. 3300 (1985). S h i k i n , Surf.Sci.113, Platzman, Phys. Rev. L e t t . P e e t e r s , Phys. Rev. 405 (1982). 50, 2021 (1983). 30, 159 (1984). 42. M. K o s t e r l i t z and D. Thouless, J . Phys. C 6, 1181 (1973). 43. B. H a l p e r i n and D. Nelson, Phys. Rev. B 19, 2457 (1979). 44. D.J. Thouless, J . Phys. C 11, L189 ( 1 9 7 8 ) . 45. L.P. G o r ' k o v and D.M. Chernikova, P i s ' m a Zh. Eksp.Teor.Fiz. 28, 119 Revista Brasileira de Flsica, Vol. 16, nP 2, 1986 (1973) EETPL e t t . 18, 68 ( 1 9 8 3 ) j . 46. H. Etz, W. Gombert, W. 2567 (1984) . I d s t e i n and P. L e i d e r e r , Phys. Rev. Lett.53, 47. U. de Fre i t a s and N . S t u d a r t , I I Workshop i n S t a t i s t i c a l Mechanics, dec. 1984, São Carlos ( B r a s i l ) , unpublished. Resumo Resul tados teÕr i cos de. a1gumas propriedades do s i s tema formado por e l é t r o n s bidimensionais sobre um f i l m e de h é l i o l í q u i d o a d s o r v i do em um s u b s t r a t o s ó l i d o são r e v i s t o s neste t r a b a l h o . Descrevemos os estados s u p e r f i c i a i s e l e t r ô n i c o s t a n t o para e l é t r o n s sobre h é l i o volumét r i c o quanto para e l é t r o n s sobre f i l m e s de h é l i o . Propriedades t a i s como o f a t o r de e s t r u t u r a e energia de c o r r e l a ç ã o são determinadas em função da l a r g u r a do f i l m e para d i f e r e n t e s t i p o s de s u b s t r a t o através de uma Aproximação de Fases A l e a t ó r i a s Generalizada. Descrevemos também as e x c i taçÕes c o l e t i v a s deste sistema. Os resultados para e l é t r o n s sobre h é l i o v o l u m é t r i c o e f i l m e s f i n o s são f a c i l m e n t e o b t i d o s . Examinamos a i n t e r a ç ã o e n t r e o e l é t r o n e as e x c i tações da superf i c i e do hél i o 1 Í q u i do resultando na formação de um novo estado p o l a r ô n i c o , que f o i observa do recentemente. A energia do estado fundamental e a massa e f e t i v a dest e polaron são determinadas p e l o formalismo de i n t e g r a l de t r a j e t ó r i a e método de transformação u n i t á r i a . Discutimos ainda algumas especulações sobre o diagrama de fase dos e l é t r o n s sobre o f i l m e de h é l i o .
© Copyright 2026 Paperzz