!" # # $ ! % &''' ( ) !"# ! " # $%&' # ! ' ( ) * * + #%,-' ! + #%. ' /0 +1 ! - 2 3 ! 4 ( + ! 1 #%. ' #' 1 5 ! 6 7 # ' ! * ! 8 + 9 #%,,' 2 9 8 * # : %&,4 ; %$-' < + 8 * * # = %%.4 ; %$-' 9 ! #%%%' > * #; %$<4 = %%.' ( * /! + 2 ! +1 9 # ' * ! ! # ' ? ( , ( * @ A 7 B %%& #7B = + %%$'4 + %%. #B + %%&'4 B /! . %$ #+ =! + %$<' = %%- #9 %,,' # ' B 8 * ( 1 ( +1 A # ' # ' . + 3 2 A ( ( ! 8 A <& * ! #C='D E F #' 1 # ' # ? ' 3 C #%-' & ! + #%,-' ( ! 3 3 #G 5 !6 ? 5 6 A ! B 56 5 6 ' B #' C=D E F # #'' # F # ' F ' # ' E ? E ! # ' # ' ## '' E F # '# ' F # ' E F #H H ' ## '' E F # ' F E F H $ E F # ¼¾ ' E F # E ' H E 4 H E ( ! ! I ! J ( ! * * J # ' ! * #' ( * #' #' E ( # 8' J E #J ' % J # ' E #' J A ( 8 ¾ #' E F K F¾ F K #' K 4 K E K E E ( # ' A - #' J ' G # ' J E # A 8 #' #' # '4 #' # ' A - ( J # ' # '4 J # ' # ' ? * # ' # ' #A ' 8 + #%% ' ? + * ( * ! @ J #' # #' ' L 8 ! !E # ' # E "' " ! #/' ) ! ( ! ( ! ( =3G #%&&' ) # M!/ ' A B # A' ? B /! = # ' # A ' + B /! A <& * * * NN * #G 2 2 ' + * / C * # ' G + %%. / #A A - ' #A < ' ( 8 F 9 # ' 2 # ' G O O G 8 #7B %%& + %%. ' B /! = O O ( 8 B /! = - + 8 ! I ( + 7B8 +8;P<- 7BP.$% O ' # / #O / B /! #,< 9 ' = #&& M' ' ! * B /! = + 8 ( ! # B' J # ' * * 2 * < B< ! @ * * ! * #' L * 8 * ! Q ! F ##' #' ## ' #' E # #'##' ( ##' E #$'$ E ## ' #R#'' ( ! % ! ! # ' # ' E ## ' #R#$'' $ : ! F ## ' #R# '' , ! #R# '' #' E #R#$'' $ % # % ! ( % ' ( #' D ( #' #' E % % # % ' J #' E % ¾ # #' F % F & E K % F #' F % & E K % F K K ' & & #' F #' H H ! #' J . ! ! #A - ' # 4 E G % #G=D +1 #%,-' ' #' E ( #' % # % ' ( % ( #' ' #' E % A '% J ( #)' E ) ) ) ) # E ' F % #H H ' FH J 7 J A 4 & ( ) * 7B + ( * * 2 * #3 ' 8 ! : + J ( ! # / ' + 2 D ) $ 8 * # + %,-' ! #1 /' ) ! 3 I # ' ( * 3 /! G ( 1 56 * ! 3 + #%,-' = #C=' % C1 #%-' 3 ( +1 #%,-' ! ? 1 # C=' ! C= @ #' # ' A ! @ C= ? @ C= > ! ! ? C= * E * 3 # ' 3 3 ! 3 8 @ ) #+ G %$%' ;3 ! 3 ! #' J ( # ' J 7 # ' # ' ( # L ' J 3 #= %$&' ( ! * * L B B #; %$-' #' 4 #' 4 #' * ( 8 @ * # ' ; #%%.' ) #; %$<' ( ! ! ; 2 +! #/ 7 ' ; C #7 "' + ; #7 S =' A GBL9+ :C &, 7 B - E E ! D E # ' F #H H ' F H #' * #' E F F #H H ' F H J * #' E L #J ' E L L ## '' E L * #' * #' E F * #H H ' F H ( * # ' E # F ' * #' E ¾ ¾ #H ' E F # # '# F ' ' H + F #H H '+ E G * #' E #-' 8 # F ' # ' J B J * B- - J ' J E # ¾ ¾ ¾ # ' E K F ¾ ¾ ¾ K #<' J B - G * ! ) ! ! E # ' # ' # ' ? ! E K K F , F F , , E # ' K # ' , E # F ' K < K F 4 # F ' K F 4 ? ! !# ' ) * / B < # ' B #B < %%&' J # ' J E # ' #' : - # ' ( ! 56 #' # ' E # F '# ' # ' A J ' # ' # # , ! ' F L #-' : # ' 3 ( 4 A #-' F # )' T T ! ! =3G : #%&&' 5L ; ; / B)6 % -,- < ! "! # $# <% = G 2 C + U / #%$&' +D + 7 . &# = 9A ; U= 8 #%%.' 5 B G B :D B) ; (6 ' ( ) . % + =! + #%$<' - * " + "! ,-.,/.0 " $ +D 8 B ; + ;C #%,-' 58 ( ; 6 + ' - -$-, + 9 #%% ' 58 G ( ; D / ; 6 " ! + + ; V 2D B" ; + #%%.' 58 B 8 C ( ; 6 ' ( ) . WW>#%$-' 5( ; 6 ,. +! " " # " < M) B G/U G X!D ? &-< C 9 #%-' $ (11 1+2 D B = #%. ' 5 /0 / ; ( 6 ( + &% + U 8 G #%$%' /D + 2 & . $ # 0 ; U= #%$<' 5B C) A B) ; (6 + , .<&..- : UM #%&,' 5B ( ; 6 " ) "3 4# " C M) B U M : = D 9 ,,$ " #$%&' 5+ 2# " D A ! B+ #%%%' C = ; L + $ . %& 9 9BC #%,,' ( ; D G + # - &&%< B/7B < #%%&' " BD B ; 8 B + #%%&' ,60,78 :D B + 7 B = + #%%$'D + 9 B . ! ( 9 ":,--7 ? ;+D 7B C :Æ $ / * G / B # ' # ' * # ' : * ! 7B #%%&' * ! + #%%.' * ! B /! #%$' * = #%--' % ! • • • • • •• • •• • • • • 100000 • • • • • • 5000 10000 50000 Cell mid-point ($) Sri Lanka - 6 mos. Household Income 1981 log scales Bohemia - Personal Income 1933 log scales • • •• • • • • • • • • Density(%) 0.050 0.100 • • • • • • • • • 0.050 • • • • • • 0.005 0.005 0.010 • Cell mid-point ($) • Densty • 5.000 0.500 1.000 50000 • 0.0006 0.00080.0010 •• 10000 • 0.500 0.5 0.6 0.7 0.8 0.9 Density • 5000 • Densiy (%) • • Canada - Personal Earnings 1996 log scales 0.0020 • 0.0030 U.S. Household Income 1997 log scales • 500 1000 5000 10000 50000 Cell mid-point (Rps.) • 5 10 50 Cell mid-point (000 Kr.) - 100 Canada 1996 Sri Lanka 1981 Bohemia 1933 50 5 10 20 5000 20 30 Cum. freq. below 100 50 Cum. freq. below 40 30 Cum. freq. below 10000 Cumm. freq. below 50 40 60 70 500 USA 1997 5000 7000 20000 30000 5000 8000 20000 600 800 Earnings 2000 6 7 8 Income 9 10 Income Cumm. freq. above 1.0 Cumm. freq. above Cumm. freq. above 0.5 8 10 9 100 10 Cumm. freq. above 500 20 5.0 1000 Income 80000 90000 Income 100000 40000 50000 60000 20000 Income 30000 Income - 50000 40 50 60 80 100 Income Probability density Probability density beta > 1 Income Income - Probability density Probability density beta < 1 Income Income Observed and fitted densities Observed and fitted densities in log scales • • • •• • •• • • •• • • • • 0.5 1.0 Density 1.0 •• • 0.0 0.5 Density 1.5 • 0 50000 100000 150000 5000 50000 100000 Class mid-point ($) Observed vs. fitted cell frequencies in log scales Q-Q plot in log scale 5000 • • •• • • • • • • • 5000 10000 • • • • • 10000 50000 Fitted quantiles -- • •• •• • 5000 Fitted frequency • • • • • • •• • 5000 10000 Upper cell limit 10000 • •••• •• • 50000 100000 Income ($) • Observed frequency 10000 100000 0.0 Density 0.001 0.002 0 20000 40000 60000 Income ($) 80000 100000 Density 0.00060.0009 0.00200.0030 Obseved and fitted densities - log scales 0.003 Obseved and fitted densities • • • • • • • 1000 • • • • • •• • • • • 4 6 8 10 12 Fitted frequency 14 5000 10000 Class mid-point ($) 50000 Q-Q plot - log scales Observed quantiles 5000 10000 50000 Observed frequency 4 6 8 10 12 14 16 Obsd. vs. fitted frequencies - log scales • • • • • 16 • • • • • • • 5000 -< • • •• 10000 Fitted quantiles 50000 Obseved and fitted densities - log scales 0.500 Density 0.0 0.2 0.4 0.6 0.8 1.0 Obseved and fitted densities • • • •• • • • • • Density 0.050 • • • • • • • 20000 40000 Income (Rps) 0.005 0 • 60000 • 500 1000 500010000 Class mid-point (Rps) •• • • • • • • • •••• Q-Q plot - log scales • • • • 5 10 50 100 Fitted frequency Observed quantiles 5001000 5000 50000 Observed frequency 5 10 50 100 500 Obsd. vs. fitted frequencies - log scales 50000 500 1000 • • • •• • • • • • 500 1000 -, • • • • •• •• • 5000 10000 Fitted quantiles 50000 Obseved and fitted densities - log scales • • • • • • • 0.005 0 0 50 100 150 1 200 5 10 50 100 Class mid-point (000 Kr) Obsd. vs. fitted frequencies - log scales • • • • • 0.5 • • •• 1.0 5.0 10.0 Fitted frequency • • • • • 5 -. • • 5 • • • • Q-Q plot - log scales Observed quantiles 10 50 100 • • • Income (000 Kr) Observed frequency 0.5 1.0 5.010.0 • • Density 0.050 0.500 4 2 Density 6 5.000 Obseved and fitted densities 10 50 Fitted quantiles 100 • 7B 2 %& + ( %. B/ 2 $ = ( -- O <<. % , O <&% - % $< O & & $.$ - O , & < . C -% <, < ,, . . % < $ ; . $ < % D ! # ' C . * B -&
© Copyright 2026 Paperzz