❙❙❙❙ 510 CHAPTER 7 TECHNIQUES OF INTEGRATION then we know from Part 1 of the Fundamental Theorem of Calculus that F"!x" ! e x 2 2 Thus, f !x" ! e x has an antiderivative F , but it has been proved that F is not an elementary function. This means that no matter how hard we try, we will never succeed in evalu2 ating x e x dx in terms of the functions we know. (In Chapter 11, however, we will see how 2 to express x e x dx as an infinite series.) The same can be said of the following integrals: y ex dx x y sx 3 y sin!x y ! 1 dx 2 " dx 1 dx ln x y cos!e y x " dx sin x dx x In fact, the majority of elementary functions don’t have elementary antiderivatives. You may be assured, though, that the integrals in the following exercises are all elementary functions. |||| 7.5 1–80 y 3. y sin x ! sec x dx tan x 0 5. y 1 7. y 3 9. 2t dt !t # 3"2 2 e dy 1 ! y2 r 4 ln r dr x#1 dx x 2 # 4x ! 5 y yx 3x 2 # 2 dx 2 # 2x # 8 26. yx 27. y cot x ln!sin x" dx 28. y sin sat dt 29. y 30. y %x 31. y 32. y x dx x4 ! x2 ! 1 33. y s3 # 2x # x 34. y% 12. y sin x cos!cos x" dx 35. y 36. y sin 4x cos 3x dx 14. y 37. y 38. y 16. y 39. y 40. y s4y 41. y $ tan $ d$ 42. yx 43. y e s1 ! e 44. y s1 ! e #1 45. yx e 46. y 1#e 2 47. yx 48. y 2. 4. arctan y #1 1 25. Evaluate the integral. |||| 1. Exercises y tan $ d$ 3 x dx s3 # x 4 y 6. y x csc x cot x dx 8. y 10. x#1 dx x 2 # 4x # 5 4 0 y 11. y sin $ 13. y !1 # x 15. y 17. y x sin x dx 18. y 1!e 19. ye 20. ye 21. yt e 22. y x sin 23. y (1 ! sx ) dx 24. y ln!x 3 5 cos $ d$ dx 1#2 0 " 2 3#2 x dx s1 # x 2 2 x!e x dx 3 #2t 1 0 dt 8 s1 ! ln x dx x ln x x2 dx s1 # x 2 s2#2 0 e 2t 3 sx 4t dt dx x dx # 1" dx 3w # 1 dw w!2 5 0 $ 1 1!x dx 1#x 2 dx x 8 sin x dx #1 %#4 0 cos2$ tan2$ d$ x dx 1 # x 2 ! s1 # x 2 2 x x dx 5 #x 3 dx x!a dx 2 ! a2 3x 2 # 2 dx 3 # 2x # 8 2 2 #2 % # 4x dx s2x # 1 dx 2x ! 3 % #2 #4 % #4 0 2 1 ! 4 cot x dx 4 # cot x tan 5$ sec 3$ d$ 2 1 dy # 4y # 3 tan#1x dx 1 ! ex x x dx dx x dx x4 # a4 ❙❙❙❙ SECTION 7.6 INTEGRATION USING TABLES AND COMPUTER ALGEBRA SYSTEMS 49. 1 y x s4x ! 1 dx 1 51. y x s4x 53. yx 55. 50. yx 2 1 dx s4x ! 1 dx ! 1" arctanst dt st 67. y 69. y 1!e 71. yx 3 1 52. y x !x 54. y !x ! sin x" dx y x ! 4 ! 4 sx ! 1 dx 56. y sx x ln x dx 2 #1 73. y !x # 2"!x 57. y x sx ! c dx 58. yx ln!1 ! x" dx 75. y sin x sin 2x sin 3x dx 59. ye 1 dx # ex 60. y x ! sx dx 77. y 1!x 61. yx x4 dx ! 16 62. y !x ! 1" 79. y x sin 63. y sxe 64. y% 66. y 65. 2 2 !1 dx sinh mx dx 1 3 y 3x 10 sx dx 1 dx sx ! 1 ! sx |||| 7.6 4 2 2 1 3 x3 10 %#3 #4 3 2 dx ln!tan x" dx sin x cos x u3 ! 1 du u3 # u2 ■ e 2x 4 x dx x dx ! 4x 2 ! 3 1 sx ■ 2 3 2 ! 4" dx dx x cos x dx ■ ■ ■ ■ 2 1 68. y 1 ! 2e 70. y 72. y 1 ! st dt 74. ye 76. y !x 78. y sin x ! sec x dx 80. y sin x # e#x 511 dx ln!x ! 1" dx x2 st 3 x dx # e #x 2 # bx" sin 2x dx sec x cos 2x sin x cos x dx 4 x ! cos 4 x ■ ■ ■ ■ ■ ■ 2 81. The functions y ! e x and y ! x 2e x don’t have elementary 2 antiderivatives, but y ! !2x 2 ! 1"e x does. Evaluate 2 x !2x 2 ! 1"e x dx. Integration Using Tables and Computer Algebra Systems In this section we describe how to use tables and computer algebra systems to integrate functions that have elementary antiderivatives. You should bear in mind, though, that even the most powerful computer algebra systems can’t find explicit formulas for the antideriv2 atives of functions like e x or the other functions described at the end of Section 7.5. Tables of Integrals Tables of indefinite integrals are very useful when we are confronted by an integral that is difficult to evaluate by hand and we don’t have access to a computer algebra system. A relatively brief table of 120 integrals, categorized by form, is provided on the Reference Pages at the back of the book. More extensive tables are available in CRC Standard Mathematical Tables and Formulae, 30th ed. by Daniel Zwillinger (Boca Raton, FL: CRC Press, 1995) (581 entries) or in Gradshteyn and Ryzhik’s Table of Integrals, Series, and Products, 6e (New York: Academic Press, 2000), which contains hundreds of pages of integrals. It should be remembered, however, that integrals do not often occur in exactly the form listed in a table. Usually we need to use substitution or algebraic manipulation to transform a given integral into one of the forms in the table. EXAMPLE 1 The region bounded by the curves y ! arctan x, y ! 0, and x ! 1 is rotated about the y-axis. Find the volume of the resulting solid. SOLUTION Using the method of cylindrical shells, we see that the volume is V ! y 2% x arctan x dx 1 0
© Copyright 2026 Paperzz