Glycerol conversion to 1,2-propanediol in mild conditions Els D’Hondt COK, KULeuven, Belgium Poitiers, March 13, 2008 Content • Introduction – Use of 1,2-propanediol – Results with better literature catalysts – Bifunctional mechanism • New bifunctional catalyst – – – – – – • Reaction conditions & Results Overall conversion results Stability 1,2-propanediol Hydrogenation of hydroxy acetone Effect of gaseous products: CO2 and H2 Origin of acidity in bifunctional pathway Reaction pathways with new bifunctional catalyst – Extended scheme for the bifunctional mechanism – Suggested reforming mechanism • Conclusions Content • Introduction – Use of 1,2-propanediol – Results with better literature catalysts – Bifunctional mechanism • New bifunctional catalyst – – – – – – • Reaction conditions & Results Overall conversion results Stability 1,2-propanediol Hydrogenation of hydroxy acetone Effect of gaseous products: CO2 and H2 Origin of acidity in bifunctional pathway Reaction pathways with new bifunctional catalyst – Extended scheme for the bifunctional mechanism – Suggested reforming mechanism • Conclusions Introduction: Use of 1,2-propanediol OH OH 1,2-Propanediol = bulk intermediate – direct use as moistering or softening agent, as anti-freeze, solvent or conservative – monomer for polyesters, polyurethanes and alkyd resins – preparation of cyclic ethers and 1,3-dioxanes used in organic synthesis as solvents or intermediates Introduction: Results with better literature heterogeneous catalysts • One step processes T (°C) p H2 (bar) Results CuCr Cu/ZnO Raney Cu CuZnO/Al2O3 270 180 240 270 200 80 30 100 Y = 85 % S = 100 %, X = 19 % Y = 57 % Y = 84 % CoCuMnMo + H3PO4 Ru/C RuS/C 230 210 240 250 60 130 Y = 96 % Y = 75 % Y = 75 % Catalyst Reference Adkins et al. , Journal of the American Chemical Society, 54: 1138-1145, (1932) Gallezot et al. , Green Chemistry, 6: 359-361, (2004) Montassier et al. , Heterogeneous Catalysis and Fine Chemicals: 165-170, (1988) Casale et al. , US Patent 5 214 219, (1993) Schuster et al. , US Patent 5 616 817, (1997) Montassier et al. , Journal of Molecular Catalysis, 70 (1), 99-110, (1991) Casale et al. , US patent 5 276 181, (1994) Y = yield, S = selectivity, X = conversion • Multiple step processes – Three step proces [1] • γ-Al2O3 at 300 °C + acid resin + Ni/Al 2O3/SiO2 at 140 °C and 40 bar H 2 Y = 60 % – Two step proces [2] • CuCr at 220 °C + CuCr at 300 °C and 14 bar H Y = 62 % 2 [1] Haas, T., Neher, A., Arntz, D., Klenk, H. & Girke, W., US 5 426 249, (1995), [2] Suppes, G.J., Sutterlin, W.R. & Dasari, A., WO 2005/095536 A2, (2005) Introduction: Bifunctional mechanism Glycerol conversion scheme via dual function catalyst * OH HO 1 OH acid 1 O OH dehydration glycerol hydroxy acetone OH + H2 OH hydrogenation 1,2-propanediol 2 acid dehydration O or O propanal acetone hydrogenation + H2 2 3 propane 3 acid + H2 hydrogenation propene dehydration OH OH n-propanol or iso-propanol * Suppes, G.J., Dasari, A.D., Kiatsimkul P. & Sutterlin, W.R., Applied Catalysis A: General, 281: 225-231 (2005). Content • Introduction – Use of 1,2-propanediol – Results with better literature catalysts – Bifunctional mechanism • New bifunctional catalyst – – – – – – • Reaction conditions & Results Overall conversion results Stability 1,2-propanediol Hydrogenation of hydroxy acetone Effect of gaseous products: CO2 and H2 Origin of acidity in bifunctional pathway Reaction pathways with new bifunctional catalyst – Extended scheme for the bifunctional mechanism – Suggested reforming mechanism • Conclusions New bifunctional catalyst: Reaction conditions & Results 8 OH HO + 3 H2O new catalyst + 3 CO2 OH OH glycerol OH 7 1,2-propanediol • Mild conditions, no additives, heterogeneous catalyst, inert atmosphere – – – – 100 ml batch reactor 230 °C, 15 h 40 ml 20 wt% glycerol in H2O 4 wt% catalyst in situ H2 production S 1,2-propanediol = 64 % X glycerol = 85 % Y 1,2-propanediol = 55 % MB liquid C = 89 % S = selectivity, X = conversion, Y = yield, MB = carbon mass balance of liquid products New bifunctional catalyst: Overall conversion results 100 X, S PDO, mb (%) . Ssideproducts (%) 20 15 ± Plateau S X S1,2-propanediol mb 80 60 40 20 0 0 5 10 15 20 t (h) 25 10 Product methanol ethanol acetone + propanal iso-propanol n-propanol ethylene glycol hydroxy-acetone 1,2-propanediol conversion (%) carbon mass balance of liquid products (%) Carbon Selectivity (%) 0,9 9,5 1,0 1,4 7,5 2,1 3,0 64,0 85,4 Yield (%) 2,4 12,2 0,9 1,2 6,4 2,6 2,6 54,6 89,4 100 ml batch reactor, 230 °C, 15 h, 40 ml 20 wt% gl ycerol in H2O, 4 wt% catalyst, Yield based on mol/L 5 SEtOH S n-propOL Selectivities and MB liquid products rather S OH-AcON 0 0 5 10 15 20 t (h) 100 ml batch reactor, 230 °C, 24 h, 40 ml 20 wt% gl ycerol in H2O, 4 wt% catalyst, X = conversion, S = selectivity, mb = mass balance of liquid products, EtOH = ethanol, n-propOL = n-propanol, OH-AcON = hydroxy acetone 25 constant after initial period New bifunctional catalyst: Stability of 1,2-propanediol Carbon Selectivity (%) conversion, Sside products (%) 25 Product 20 ethanol acetone + propanal iso-propanol n-propanol hydroxy-acetone conversion (%) carbon mass balance of liquid products (%) 15 Sethanol Sn-propanol Shydroxy acetone conversion 10 5 0 0 • 10 15 20 t (h) 25 70,7 Via bifunctional pathway to n-propanol OH H+ O redox OH + H2 - H2O OH • 5 40,5 1,3 5,7 18,6 4,7 24,7 Via dehydrogenation and cracking to ethanol and CO OH OH OH redox - H2 O OH O redox OH + CO 100 ml batch reactor, 230 °C, 24 h, 40 ml 20 wt% 1, 2-propanediol in H2O, 4 wt% catalyst, S = carbon selectivity New bifunctional catalyst: Hydrogenation of hydroxy acetone Product methanol ethanol acetone + propanal iso-propanol n-propanol ethylene glycol 1,2-propanediol conversion (%) carbon mass balance of liquid products (%) Carbon Selectivity (%) no H2 42 bar H2 OH O 0,0 5,0 2,6 0,3 2,0 0,0 65,6 77,9 0,0 1,4 0,4 1,0 1,8 0,0 91,3 98,7 75,4 95,9 redox OH • Equimolar amount of H2 and hydroxy acetone – Fast hydrogenation – Low selectivity for CO, CO2 and CH4 – Enhanced selectivity for propane OH + CO O Fast hydrogenation or cracking into ethanol and CO OH O OH OH H+ - H2O redox or O + H2 or H+ OH - H2O 100 ml batch reactor, 230 °C, 1 h, 40 ml 20 wt% hyd roxy acetone in H2O, 4 wt% catalyst redox + H2 New bifunctional catalyst: Effect of gaseous products Product methanol ethanol acetone + propanal iso-propanol n-propanol ethylene glycol hydroxy-acetone 1,2-propanediol conversion (%) carbon mass balance of liquid products (%) no H2 24 h 0,9 10,6 0,9 1,9 8,9 1,0 2,0 45,8 100,0 72,0 Carbon Selectivity (%) 5 bar CO2 20 bar CO2 5 bar H2 24 h 24 h 24 h 0,8 0,7 0,9 12,2 12,3 9,6 1,0 2,2 0,5 1,9 0,0 1,3 8,2 10,5 7,1 0,8 0,4 2,0 2,4 2,4 2,0 43,7 34,4 50,7 99,7 99,2 96,3 71,0 62,9 100 ml batch reactor, 230 °C, 24 or 72 h, 40 ml 20 w t% glycerol in H2O, 4 wt% catalyst 74,0 42 bar H2 72 h 1,2 6,7 0,2 1,4 8,0 2,0 1,0 76,8 100,0 97,4 New bifunctional catalyst: Effect of gaseous products Product methanol ethanol acetone + propanal iso-propanol n-propanol ethylene glycol hydroxy-acetone 1,2-propanediol conversion (%) carbon mass balance of liquid products (%) • no H2 24 h 0,9 10,6 0,9 1,9 8,9 1,0 2,0 45,8 100,0 72,0 Carbon Selectivity (%) 5 bar CO2 20 bar CO2 5 bar H2 24 h 24 h 24 h 0,8 0,7 0,9 12,2 12,3 9,6 1,0 2,2 0,5 1,9 0,0 1,3 8,2 10,5 7,1 0,8 0,4 2,0 2,4 2,4 2,0 43,7 34,4 50,7 99,7 99,2 96,3 71,0 Equimolar amount of H2 and glycerol – Decreased activity 72 h for full conversion 62,9 74,0 42 bar H2 72 h 1,2 6,7 0,2 1,4 8,0 2,0 1,0 76,8 100,0 97,4 Inhibition reforming Increased S 1,2-propanediol 77 % Increased MB liquid C 97 % 100 ml batch reactor, 230 °C, 72 h, 40 ml 20 wt% gl ycerol in H2O, 4 wt% catalyst, S = selectivity, MB = carbon mass balance of liquid products New bifunctional catalyst: Effect of gaseous products Product methanol ethanol acetone + propanal iso-propanol n-propanol ethylene glycol hydroxy-acetone 1,2-propanediol conversion (%) carbon mass balance of liquid products (%) no H2 24 h 0,9 10,6 0,9 1,9 8,9 1,0 2,0 45,8 100,0 72,0 • 5 bar CO2: No effect • 20 bar CO2: Increased activity Carbon Selectivity (%) 5 bar CO2 20 bar CO2 5 bar H2 24 h 24 h 24 h 0,8 0,7 0,9 12,2 12,3 9,6 1,0 2,2 0,5 1,9 0,0 1,3 8,2 10,5 7,1 0,8 0,4 2,0 2,4 2,4 2,0 43,7 34,4 50,7 99,7 99,2 96,3 71,0 62,9 – Decreased 1,2-propanediol selectivity – Decreased carbon mass balance liquid products 100 ml batch reactor, 230 °C, 24 h, 40 ml 20 wt% gl ycerol in H2O, 4 wt% catalyst 74,0 42 bar H2 72 h 1,2 6,7 0,2 1,4 8,0 2,0 1,0 76,8 100,0 97,4 Consecutive reactions CO2 + H2O H2CO3 Origin of acidity in bifunctional mechanism 20 bar CO2 as acid catalyst, no catalyst – Hydroxy acetone is formed in presence of 20 bar CO2 – Versus thermostability of glycerol (X = 0 %) without catalyst 50 X, S ethanol, Shyroxy acetone (%) • Sethanol Shydroxy acetone X 40 30 20 10 0 0 Only the metal as catalyst, no carrier 2 3 4 5 6 7 t (h) 8 100 ml batch reactor, 230 °C, 7 h, 40 ml 20 wt% gly cerol in H2O, 20 bars CO2 , X = conversion, S = selectivity 100 45 Sn-propOL no carrier Sn-propOL 40 80 Sside products (%) – Low conversion – Higher S side products – High MB liquids X, S, Y, mb (%) • 1 60 40 20 SOH-AcON no carrier SOH-AcON 35 30 25 20 15 10 5 CO2 as acid catalyst 0 0 5 X no carrier X 10 15 SPDO no carrier SPDO t (h) 25 20 mb no carrier mb 0 0 5 10 15 20 t (h) 25 100 ml batch reactor, 230 °C, 24 h, 40 ml 20 wt% gl ycerol in H2O, 0,26 mmol metal (…) or patented catalyst (―), X = conversion, S = selectivity, Y = yield, mb = carbon mass balance of liquid products, PDO = 1,2-propanediol, n-propOL = n-propanol, OH-AcON = hydroxy acetone Content • Introduction – Use of 1,2-propanediol – Results with better literature catalysts – Bifunctional mechanism • New bifunctional catalyst – – – – – – • Reaction conditions & Results Overall conversion results Stability 1,2-propanediol Hydrogenation of hydroxy acetone Effect of gaseous products: CO2 and H2 Origin of acidity in bifunctional pathway Reaction pathways with new bifunctional catalyst – Extended scheme for the bifunctional mechanism – Suggested reforming mechanism • Conclusions Bifunctional mechanism: Extended scheme OH HO acid isomerisation O OH dehydration glycerol OH OH hydroxy acetone O 2-hydroxy propanal 1 1 hydrogenation C-CO cracking OH OH OH 1,2-propanediol 2 acid + CO ethanol dehydration acid dehydration O O propanal propene hydrogenation 3 3 acid dehydration acetone 2 hydrogenation ethene hydrogenation OH OH propane isomerisation n-propanol isomerisation iso-propanol ethane Suggested reforming mechanism: Based on experimental data OH HO OH glycerol (de)hydrogenation O HO H + CO + H2 redox hydroxy ethanal redox O OH HO O glyceraldehyde + H2 H2 + HO dihydroxy acetone (de)hydrogenation O H H + CO + H2 OH HO ethylene glycol formaldehyde Equilibrated via water gas shift reaction: redox (de)hydrogenation OH CO + H2 H H H methanol OH CO + H2O CO2 + H2 Content • Introduction – Use of 1,2-propanediol – Results with better literature catalysts – Bifunctional mechanism • New bifunctional catalyst – – – – – – • Reaction conditions & Results Overall conversion results Stability 1,2-propanediol Hydrogenation of hydroxy acetone Effect of gaseous products: CO2 and H2 Origin of acidity in bifunctional pathway Reaction pathways with new bifunctional catalyst – Extended scheme for the bifunctional mechanism – Suggested reforming mechanism • Conclusions Conclusions • Characteristics of the proces – in situ H2 production: reforming + water gas shift reaction Inhibition reforming by biogenic H2 pressure C3H8O3 3 CO + 4 H2 8 C3H8O3 + 3 H2O 7 C3H8O2 + 3 CO2 X glycerol = 85 % • S 1,2-propanediol = 64 % MB liquid C = 89 % 3 CO + 3 H2O 3 CO2 + 3 H2 7 C3H8O3 + 7 H2 7 C3H8O2 Specific carrier – Good stability of 1,2-propanediol Affinity glycerol > affinity 1,2-propanediol – Fine tuned acidity Minor consecutive reactions – Quenching carbon acid acidity – Isomerisation Provides more substrates for reforming Thank you for your attention!
© Copyright 2026 Paperzz