LetπΏbeanonzerorealnumber. (a) Showthattheboundary-valueproblemπ¦ !! + ππ¦ = 0,π¦ 0 = 0,π¦ πΏ = 0has onlythetrivialsolutionπ¦ = 0forthecasesπ = 0andπ < 0. Forπ = π: π ππ¦ π π¦ !! + 0 π¦ = 0 β π¦ !! = 0 β = 0 β π π¦! π‘ = 0 β π¦ = 0 β ππ¦ = 0 ππ‘ ππ‘ ππ‘ β΄ π¦ = 0 Forπ < π: π¦ !! + βπ π¦ = 0 β π ! β ππ = 0 β π = 0 β¨ π = π β π¦ = π! + π! π !" Solvingforthegivenboundaryvalues: π¦ 0 = 0 β§ π¦ πΏ = 0 π! + π! = 0 1 1 π! 0 β β = !" !" π π! + π π! = 0 1 π ! 0 Onlythetrivial(obvious)solutionexistsi.e.π! andπ! areequaltozero. 1 1 β΅ ~πΌ! β΄ π! = 0 β§ π! = 0 1 π !" β΄ π¦ = 0 (b) Forthecaseπ > 0,findthevaluesofπforwhichthisproblemhasa nontrivialsolutionandgiventhecorrespondingsolution. Forπ > π: π¦ !! + ππ¦ = 0 β π ! + π = 0 β π = 0 ± ππ β΄ π¦ = π! sin ππ‘ + π! cos ππ‘ Solvingforthegivenboundaryvalues: π¦ 0 = 0 β§ π¦ πΏ = 0 β Solve: π! = 0 π! sin ππΏ + π! cos ππΏ = 0 π! sin β΄ π! sin ππΏ = 0 β΄ π! = π! = 0 ππΏ = 0 β π! = 0 Thesolutionisagainπ¦ = 0fortheboundariesbutthequestionwantsustosolvefor π. β΄ sin ππΏ = 0 β ππΏ = arcsin 0 = ππ β! β β Note:βisthesetofpositiveintegers.(Wecouldusenegativeintegersbutthat wouldimply ππΏ < 0andevenrootscanneverbenegative.) ππ ! π ! π ! β΄π= = ! πΏ πΏ UsuallycalledtheEigenfunction: ππ π! sin ππ‘ = 0 β π¦ = πΆ sin β π‘ πΏ
© Copyright 2026 Paperzz