Standard Grade and Higher still www.mathsrevision.com Wave Function Example Write the equation below in the wave function format f ( x) sin( x) cos ( x) Comparing to the identity k sin x k sin( x) cos k cos ( x) sin We can express f ( x) sin( x) cos ( x) In the form of the wave equation 12 12 k k sin 2 k cos k sinx 1 tan 1 1 o 45 Hence we have f ( x) sin( x) cos ( x) o 2 sin x 45 Plotting each function we can see they are indeed equal. Wave function 2 1 Amplitude sin( x de g) sin( x de g) cos( x de g) 2 sin( x de g 45 de g) 90 0 90 180 270 360 450 540 1 2 x de gree Page 1 of 2 630 720 Standard Grade and Higher still www.mathsrevision.com Wave Function Example Solve the expression below f ( x) sin( x) cos ( x) f ( x) 2 sin x 45 o o 2 sin x 45 0 x 360 0.5 0.5 Dividing through by root 2 and taking inverse sine we get x 45o x 45o sin 1 0.5 2 20.7 and 180 20.7 159.3 and all multiplies of 360 deg. 360 20.7 380.7 159.3 360 519.3 Hence we have x = 20.7 45 24.3 159.3 45 114.3 We are only interested in the range Hence answers are 380.7 35 345.7 519.3 45 474.3 0 x 360 114.3and 345.7 Solution to sin(x)+cos(x) = 0.5 2 345.7 114.3 114.3 1 2 sin( x de g 45 de g) 0.5 90 45 0 45 90 135 180 225 1 2 x Page 2 of 2 270 315 360
© Copyright 2026 Paperzz