Definition and use of spherical harmonics in Siesta A shortcut: l = 1, M : −1 −y 0 z 1 l = 2, M : −x −2 xy −1 0 −yz 3z 2 −r2 1 2 −xz x2 −y 2 Where and how defined: spher_harm.f C C C C C C C C C C C C module spher_harm ... subroutine rlylm( LMAX, R, RLY, GRLY ) ... FINDS REAL SPHERICAL HARMONICS MULTIPLIED BY R**L: RLY=R**L*YLM, AND THEIR GRADIENTS GRLY, AT POINT R: YLM = C * PLM( COS(THETA) ) * SIN(M*PHI) FOR M < 0 YLM = C * PLM( COS(THETA) ) * COS(M*PHI) FOR M >= 0 WITH (THETA,PHI) THE POLAR ANGLES OF R, C A POSITIVE NORMALIZATION CONSTANT AND PLM ASSOCIATED LEGENDRE POLYNOMIALS. THE ORDER OF THE Y’S IS THAT IMPLICIT IN THE NESTED LOOPS DO L=0,LMAX DO M=-L,L WITH A UNIFIED INDEX ILM=1,...,LMAX**2 INCREASING BY ONE UNIT IN THE INNER LOOP. WRITTEN BY J.M.SOLER. AUG/96 Complex harmonics: s | lmi = Clm Plm (cos ϑ) eimϕ = Pl (u) = 2l + 1 (l − |m|)! d|m| Pl (cos ϑ) imϕ · (−1)m sin|m| ϑ e ; 4π (l + |m|)! d cos|m| ϑ (−1)l dl (1 − u2 )l 2l l! dul ⇒ Legendre polynomials: P0 = 0 ; 1 P2 = (3u2 − 1) ; 2 P1 = u ; 1 P3 = (5x3 − 3x) . . . 2 Real harmonics | lM i and their relation to complex ones | lmi: | lM i = | lmi = 1 1 lM̄ = √ √ [ | lmi + (−1)m | l, −mi ] ; [ | lmi − (−1)m | l, −mi ] 2 i 2 1 1 √ [ | lM i + i| l, M̄ i ] ; | l, −mi = √ [ | lM i − i| l, M̄ i ] . 2 2 1 1 |00i = √ 4π r r 3 3 z |10i = cos ϑ → ; 4π 4π rr i 1 h 3 | 1 1 i = √ | 1 I i + i | 1 Ī i = − sin ϑ eiϕ 8π 2 i r 3 1 h | 1 −1 i = √ −| 1 I i + i | 1 Ī i = sin ϑ e−iϕ 8π 2 r i 1 h 3 | 1 I i = √ | 1 1 i − | 1 −1 i = − sin ϑ cos ϕ 4π 2 r i 1 h 3 √ | 1 Ī i = | 1 1 i + | 1 −1 i = − sin ϑ sin ϕ 4π i 2 r → → 3 x ; 4π r r 3 y − ; 4π r − 5 5 3z 2 −r2 |20i = (3 cos2 ϑ − 1) → ; 16π 16π r2 r i 1 h 15 | 2 1 i = √ | 2 I i + i | 2 Ī i = − sin ϑ cos ϑ eiϕ 8π 2 i r 15 1 h | 2 −1 i = √ −| 2 I i + i | 2 Ī i = sin ϑ cos ϑ e−iϕ 8π 2 r r i 1 h 15 15 2xz | 2 I i = √ | 2 1 i − |2 −1 i = − sin 2ϑ cos ϕ → − ; 16π 16π r2 2 r r i 15 15 2yz 1 h | 2 Ī i = √ | 2 1 i + |2 −1 i = − sin 2ϑ sin ϕ → − 16π 16π r2 i 2 r i 15 1 h | 2 2 i = √ | 2 II i + i | 2 ĪI i = sin2 ϑ ei2ϕ 32π 2 i r 15 1 h √ | 2 −2 i = | 2 II i − i | 2 ĪI i = sin2 ϑ e−i2ϕ 32π 2 r i r 15 1 h 15 x2 − y 2 2 | 2 II i = √ | 2 2 i + |2 −2 i = sin ϑ cos 2ϕ → ; 16π 16π r2 2 r i r 15 i h 15 2xy 2 | 2 ĪI i = √ | 2 2 i − |2 −2 i = sin ϑ sin 2ϕ → 16π 16π r2 2 r r 2
© Copyright 2026 Paperzz