TRIGONOMETRIC RATIOS CLASS X 1. 2. 3. If sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A. If A, B, C, are the interior angles of a triangle ABC, prove that B A CA BC (A) tan (B) sin cot cos 2 2 2 2 Prove the following: cos(90 )sec(90 ) tan tan(90 ) (A) 2 cosec(90 )sin(90 ) cot(90 ) cot (B) (C) 4. tan(90 A) cot A cos 2 A 0 2 cosec A cos(90 A)sin(90 A) sin 2 A tan(90 A) (D) sin(50 ) cos(40 ) tan1 tan10 tan 20 tan 70 tan80 tan89 1 Evaluate: 2 1 (A) (cos 4 30 sin 4 45) 3(sin 2 60 sec2 45) cot 2 30 3 4 2 1 (B) 4(sin 4 30 cos 4 60) (sin 2 60 cos 2 45) tan 2 60 3 2 sin 50 cosec 40 (C) 4cos 50 cosec 40 cos 40 sec50 (D) cosec(65 ) sec(25 ) tan(55 ) cot(35 ) (E) (F) 2sin 68 2cot15 3tan 45 tan 20 tan 40 tan 50 tan 70 cos 22 5 tan 75 5 3cos 55 4(cos 70 cosec 20) 7sin 35 7(tan 5 tan 25 tan 45 tan 65 tan 85) sin18 3 tan10 tan 30 tan 40 tan 50 tan 80 cos 72 cos58 sin 22 cos38 cosec52 (H) sin 32 cos 68 tan18 tan 35 tan 60 tan 72 tan 55 If A, B, C are the interior angles of a ABC, show that: BC A BC A cos sin (A) sin (B) cos 2 2 2 2 Evaluate each of the following: (G) 5. 6. NARAYANA DWARKA CENTRE 201A, Dimension Durga Tower, Sector 4 Market, Dwarka New Delhi – 110075, Ph:45621724/25 cos 2 40 cos 2 50 (A) cos(40 ) sin(50 ) sin 2 40 sin 2 50 cos 70 cos 55 cosec35 (B) sin 20 tan 5 tan 25 tan 45 tan 65 tan 85 cos 58 cos 38 cosec 52 (C) 2 3 sin 32 tan15 tan 60 tan 75 7. 8. 9. 10. tan A tan B tan A cot B sin 2 B tan A sin A sec B cos 2 A If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A. 1 1 tan A tan B If A and B are acute angles such that tan A , tan B and tan(A B) , show 3 2 1 tan A tan B that A + B = 45°. Without suing trigonometric tables, evaluate the following: 3cos 55 4(cos 70 cosec 20) (A) 7sin 35 7(tan 5 tan 25 tan 45 tan 65 tan 85) If A + B = 90°, prove that (B) tan .cot(90 ) sec cosec(90 ) sin 2 35 sin 2 55 tan10 tan 20 tan 30 tan 70 tan 80 NARAYANA DWARKA CENTRE 201A, Dimension Durga Tower, Sector 4 Market, Dwarka New Delhi – 110075, Ph:45621724/25
© Copyright 2026 Paperzz