Mathematical Biology: Metabolic Network Analysis Lecture 2 (13th February 2017): Modeling Metabolic Networks II dr. Sander Hille [email protected] http://pub.math.leidenuniv.nl/~hillesc Snellius, Niels Bohrweg 1, room 402 Mathematisch Instituut Spring semester 2017 Summary of last week Mathematisch Instituut Modeling of (bio)chemical reaction networks: 0.) Hypergraph representation (Usual description in biochemistry) ATP Glucose ADP G6P F6P 1.) Weighted bi-partite graph representation R1: R1 A + B → 2C A B A R1 B (2) Sander Hille 2 C C Stoichiometric matrix Spring semester 2017 Metabolic Nw. An. L2 1 Summary of last week Mathematisch Instituut Modeling of (bio)chemical reaction networks: 1.) Weighted bi-partite graph representation 2.) (Directed) substrate graph Nodes: the chemical compounds involved Edges: arrow from A to B for each reaction that uses A as substrate and produces B A C B One-way, irreversible (loss of information) E D (loss of information) 2b.) (Undirected) substrate graph (3) Sander Hille Metabolic Nw. An. L2 Spring semester 2017 Summary of last week Mathematisch Instituut Modeling of (bio)chemical reaction networks: 1.) Weighted bi-partite graph representation 2.) (Directed) substrate graph Nodes: the chemical compounds involved Edges: arrow from A to B for each reaction that uses A as substrate and produces B A One-way, irreversible (loss of information) C B E D (loss of information) 2b.) (Undirected) substrate graph (3) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 2 Summary of last week Mathematisch Instituut Modeling of (bio)chemical reaction networks: 1.) Weighted bi-partite graph representation 2.) (Undirected / directed) substrate graph 3.) (Directed) Reaction graph Nodes: the chemical reactions involved Edges: arrow from R1 to R2 if reaction R2 uses a product of reaction R1 as substrate (loss of information) 3b.) (Undirected) Reaction graph (4) Spring semester 2017 Sander Hille Metabolic Nw. An. L2 An additional network model Mathematisch Instituut (from the general Chemical Reaction Network Theory: CRNT) 4.) CRNT network model Issue: e.g. catalyzed reactions G6P + E → F6P + E E: enzyme – catalyst, here phosphoglucose isomerase R1 G6P R1 F6P G6P F6P E E Stoichiometric matrix No net change in amount of E !! (5) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 3 An additional network model Mathematisch Instituut (from the general Chemical Reaction Network Theory: CRNT) 4.) CRNT network model Issue: e.g. catalyzed reactions G6P + E → F6P + E E: enzyme – catalyst, here phosphoglucose isomerase R1 G6P R1 G6P F6P F6P E E Stoichiometric matrix G6P R1 F6P Ambiguity !! (5) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 An additional network model Mathematisch Instituut (from the general Chemical Reaction Network Theory: CRNT) 4.) CRNT network model A chemical reaction network is a triple 1. of finite sets: is the set of basic species / molecules that undergo chemical transitions 2. is the set of all complexes, i.e. all combinations of species (together with their multiplicities) that are either substrate or product of a reaction. 3. is the set of all reactions, i.e. all transitions between complexes that are possible. (6) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 4 An additional network model Mathematisch Instituut (from the general Chemical Reaction Network Theory: CRNT) 4.) CRNT network model A chemical reaction network is a triple (6) of finite sets: 1. is the set of basic species / molecules that undergo chemical transitions 2. is the set of all complexes, i.e. all combinations of species (together with their multiplicities) that are either substrate or product of a reaction. 3. is the set of all reactions, i.e. all transitions between complexes that are possible. Sander Hille Spring semester 2017 Metabolic Nw. An. L2 An additional network model Mathematisch Instituut (from the general Chemical Reaction Network Theory: CRNT) 4.) CRNT network model Nodes: the complexes in Arrows: the reactions in G6P + E → F6P + E G6P R1 F6P E (7) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 5 An additional network model Mathematisch Instituut (from the general Chemical Reaction Network Theory: CRNT) 4.) CRNT network model -- Provides an unambiguous representation of any chemical reaction network -- Characteristics of the graph representation relate to possible dynamics of the reaction network (‘Feinberg’s deficiency-one theorem’) -- The graph representation is hard to interpret in terms of chemical transitions of species, however… G6P R1 F6P E (8) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 An additional network model Mathematisch Instituut (from the general Chemical Reaction Network Theory: CRNT) 4.) CRNT network model -- Provides an unambiguous representation of any chemical reaction network -- Characteristics of the graph representation relate to possible dynamics of the reaction network (‘Feinberg’s deficiency-one theorem’) -- The graph representation is hard to interpret in terms of chemical transitions of species There is no need for a CRNT network model if one does not include the catalysts in a metabolic network model … so we do not, and model with bi-partite graphs (8) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 6 Mathematisch Instituut Elementary biochemical reactions (9) Sander Hille Metabolic Nw. An. L2 Spring semester 2017 Elementary biochemical reactions Mathematisch Instituut -- 1. Isomerases -Three types of elementary biochemical reactions: 1.) Isomeric reactions, (‘subgroup reorganisation’) Isomer: chemical compound with the same molecular formula, but different structural formula Example: in glycolysis… ATP ADP 1 Glucose 2 G6P 3 F6P Phosphoglucose isomerase (10) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 7 Elementary biochemical reactions Mathematisch Instituut -- 1. Isomerases -Three types of elementary biochemical reactions: 1.) Isomeric reactions, (‘subgroup reorganisation’) G6P F6P α-D-glucose-6-phosphate β-D-fructose-6-phosphate Same molecular formula C6H13O9P (11) Sander Hille C6H13O9P Spring semester 2017 Metabolic Nw. An. L2 Elementary biochemical reactions Mathematisch Instituut -- 1. Isomerases -Three types of elementary biochemical reactions: 1.) Isomeric reactions, (‘subgroup reorganisation’) G6P F6P Phosphoglucose isomerase (EC 5.3.1.9) (Enzyme Commission number; classifies catalyzed reactions) α-D-glucose-6-phosphate β-D-fructose-6-phosphate Isomerase: Enzyme that changes the structural formula of a compound, not its molecular formula (12) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 8 Elementary biochemical reactions Mathematisch Instituut -- 1. Isomerases -Three types of elementary biochemical reactions: 1.) Isomeric reactions, (‘subgroup reorganisation’) Modelling: R1+ (a) M1 M2 R1- (pair of unidirectional (irreversible) reactions) Labelling ‘+’/’-’ indicates that the same enzyme catalyzes both forward (+) and backward (-) reactions (b) M1 M2 R1 (introduce new class of reversible reactions, catalyzed by the same enzyme) Arrow indicates the choice of positive direction (‘forward reaction’) (‘Tripartite graph’) (13) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 Elementary biochemical reactions Mathematisch Instituut -- 1. Isomerases -Three types of elementary biochemical reactions: 1.) Isomeric reactions, (‘subgroup reorganisation’) Stoichiometric matrix: R1+ R1- R1+ (a) (b) M1 M1 R1- R1 M2 M1 M2 R1 M2 M1 M2 (14) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 9 Elementary biochemical reactions -- 2. Bimolecular association / dissociation -- Mathematisch Instituut Three types of elementary biochemical reactions: 2.) Bimolecular association or dissociation, (‘splitting’) or M1 + M2 → M3 M1→ M2 + M3 Example: again in glycolysis… ATP ADP DHAP 1 Glucose 2 4 3 G6P F6P F1,6BP GAP Andolase … or starch production (polymerisation) (15) Sander Hille Metabolic Nw. An. L2 Spring semester 2017 Elementary biochemical reactions -- 2. Bimolecular association / dissociation -- Mathematisch Instituut Three types of elementary biochemical reactions: 2.) Bimolecular association or dissociation, (‘splitting’) or M1 + M2 → M3 M1→ M2 + M3 Modelling: M1 M2 R1 M3 M1 R2 M2 M3 Stoichiometric matrix: R1 (16) Sander Hille R2 M1 M1 M2 M2 M3 M3 Spring semester 2017 Metabolic Nw. An. L2 10 Elementary biochemical reactions Mathematisch Instituut -- 3. Co-factor coupled reactions -Three types of elementary biochemical reactions: 3.) Co-factor coupled reactions, (‘carrier mediated’) A moiety P is ‘donated’ by a carrier (co-factor) C to an accepting compound A A + CP → AP + C Example: again in glycolysis… -- phosphorylation -ATP ADP 1 Glucose 2 G6P 3 F6P Hexokinase (17) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 Elementary biochemical reactions Mathematisch Instituut -- 3. Co-factor coupled reactions -Three types of elementary biochemical reactions: 3.) Co-factor coupled reactions, (‘carrier mediated’) A moiety P is ‘donated’ by a carrier (co-factor) C to an accepting compound A ATP A + CP → AP + C A: P: C: (18) Sander Hille 1 Glucose Glucose Phosphate group The currency metabolite ADP D-glucose ADP G6P Hexokinase α-D-glucose-6-phosphate Spring semester 2017 Metabolic Nw. An. L2 11 Elementary biochemical reactions Mathematisch Instituut -- 3. Co-factor coupled reactions -Three types of elementary biochemical reactions: 3.) Co-factor coupled reactions, (‘carrier mediated’) A moiety P is ‘donated’ by a carrier (co-factor) C to an accepting compound A A + CP → AP + C Modelling: (M1 = A; M2 = AP) (a) M1 R1 M2 (Carrier/currency metabolites is not explicitly modelled, e.g. energy balance is not important) (b) M1 R1 M2 (Carrier/currency metabolites are explicitly modelled, e.g. energy balance is taken into account ) C1 C2 (C1 = C; C2 = CP: currency metabolites) (19) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 Elementary biochemical reactions Mathematisch Instituut -- 3. Co-factor coupled reactions -Three types of elementary biochemical reactions: 3.) Co-factor coupled reactions, (‘carrier mediated’) A moiety P is ‘donated’ by a carrier (co-factor) C to an accepting compound A Stoichiometric matrix: (b) R1 M1 M2 R1 C1 C2 M1 M2 C1 C2 (19) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 12 Note: further classification -- types of metabolites / reactions -- Mathematisch Instituut So, two types of metabolites may be identified in model: M1 M2 -- Specific metabolites -- Currency metabolites (ADP / ATP, NAD+ / NADH) C1 C2 And two types of reactions: R1 -- Irreversible reactions -- Reversible reactions (catalyzed by the same enzyme) (20) Sander Hille Spring semester 2017 R1 Metabolic Nw. An. L2 Mathematisch Instituut Modularisation and virtual and physical compartmentation (21) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 13 Modularisation Mathematisch Instituut Often one is interested in modeling only part of an organism’s metabolic network: -- ‘Reductionist approach’ -- Full network is not accessible computationally (22) Sander Hille Spring semester 2017 Modularisation Metabolic Nw. An. L2 Mathematisch Instituut Often one is interested in modeling only part of an organism’s metabolic network: -- ‘Reductionist approach’ -- Full network is not accessible computationally -- Part of the network may be sufficient for studying research question of interest So one (subjectively) selects a subnetwork: a module (simplified E.coli metabolic model) (22) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 14 Modularisation Mathematisch Instituut -- example: glycolytic pathway -- Orth, Fleming, and Palsson (2010) ‘Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide’ (23) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 Modularisation Mathematisch Instituut -- example: glycolytic pathway -Extracellular glucose (nutrient) Glu Intracellular glucose-6-phosphate G6P Flucose-6-phosphate F6P (Flucose-1,6-biphosphate is omitted) (23) Sander Hille Spring semester 2017 F1,6BP Metabolic Nw. An. L2 15 Modularisation Mathematisch Instituut -- example: glycolytic pathway -Extracellular glucose (nutrient) Glu Intracellular glucose-6-phosphate G6P Flucose-6-phosphate F6P F1,6BP GAP DHAP (23) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 Modularisation Mathematisch Instituut -- example: glycolytic pathway -M1 F6P M1 module R1 F1,6BP R1’ M2 GAP DHAP R2 (Hypergraph representation) M3 M4 (bipartite graph representation) Or M3 M4 (bipartite graph representation with non-elementary - modular - reaction ) M3 M1 MR1 M4 ‘Modular reaction’ (24) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 16 Modularisation -- example: glycolytic pathway -- Mathematisch Instituut M3 M1 MR1 M4 The function of modular reaction 1 is: -- ‘to transform one M1 (F6P) into one M3 (DHAP) and one M4 (GAP)’ Glycolytic pathway / glycolysis: The function of glycolysis is: Glu 2 ‘Glycolysis’ 2 ADP 2 2 2 NAD+ NADH ATP Pyr (25) Sander Hille -- ‘to transform one glucose into two pyruvate (central metabolite), together with a net gain of two ATP (energy) and two NADH (redox power) (currency metabolites) Spring semester 2017 Metabolic Nw. An. L2 Modularisation -- example: glycolytic pathway -- Mathematisch Instituut M3 M1 MR1 M4 The function of modular reaction 1 is: -- ‘to transform one M1 (F6P) into one M3 (DHAP) and one M4 (GAP)’ Glycolytic pathway / glycolysis: Recall ‘catabolism’: Glu 2 ‘Glycolysis’ 2 ADP 2 2 2 NAD+ NADH ATP (25) Sander Hille Pyr Spring semester 2017 Metabolic Nw. An. L2 17 Modularisation Mathematisch Instituut -- a hierarchy of network models -R1 ‘Glycolysis’ Glu 2 ADP 2 2 2 NAD+ NADH ATP ADP Glu R1 G6P R2 2 F6P ATP Pyr ADP DHAP MR1 R3 ATP GAP MR2 ‘Exergonic reactions’ 4 ADP (26) Sander Hille 2 2 2 4 NAD+ NADH ATP Pyr Metabolic Nw. An. L2 Spring semester 2017 Modularisation Mathematisch Instituut -- a hierarchy of network models -R1 ‘Glycolysis’ Glu 2 ADP ADP Glu R1 ATP G6P R2 F6P 2 2 2 2 NAD+ NADH ATP Pyr ADP DHAP MR1 R3 ATP GAP MR2 ‘Exergonic reactions’ 4 ADP (26) Sander Hille Spring semester 2017 2 2 2 4 NAD+ NADH ATP Pyr Metabolic Nw. An. L2 18 Modularisation Mathematisch Instituut -- a hierarchy of network models -R1 ‘Glycolysis’ Glu 2 ADP 2 2 2 NAD+ NADH ATP ADP Glu R1 G6P R2 2 F6P ATP Pyr ADP DHAP MR1 R3 ATP GAP MR2 ‘Exergonic reactions’ 4 ADP (26) Sander Hille 2 2 2 4 NAD+ NADH ATP Pyr Metabolic Nw. An. L2 Spring semester 2017 Modularisation Mathematisch Instituut -- a hierarchy of network models -R1 ‘Glycolysis’ Glu 2 ADP ADP Glu R1 ATP G6P R2 F6P 2 2 2 2 NAD+ NADH ATP ADP DHAP MR1 R3 ATP GAP Note: currency metabolites are often copied – to avoid graphs with complex connections… (27) Sander Hille Pyr MR2 ‘Exergonic reactions’ 4 ADP Spring semester 2017 2 2 2 4 NAD+ NADH ATP Pyr Metabolic Nw. An. L2 19 Modularisation Mathematisch Instituut -- a hierarchy of network models -R1 ‘Glycolysis’ Glu 2 ADP ADP Glu G6P R1 ATP R2 F6P 2 2 2 2 NAD+ NADH ATP Pyr ADP DHAP MR1 R3 ATP GAP MR2 ‘Exergonic reactions’ 4 Note: only net inputs and outputs are presented in higher level module (28) Sander Hille 2 ADP Spring semester 2017 2 Pyr 4 2 2 2 NAD+ NADH ATP Metabolic Nw. An. L2 Mathematisch Instituut Exchange reactions (29) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 20 Exchange reactions Mathematisch Instituut -- transport over membranes -- Cells are enclosed by the cell membrane and cell wall. Metabolites (nutrients) must cross this barrier. Cells may have many internal compartments and membranes too… (30) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 Compartmentation -- Nature’s diversity -- Eukaryotes Prokaryotes Compartmentalized cells with (many) organelles, e.g. nucleus Unicellular; No internal compartments in cells (31) Sander Hille Mathematisch Instituut Spring semester 2017 Metabolic Nw. An. L2 21 Compartmentation Mathematisch Instituut -- Nature’s diversity -- Eukaryotes Prokaryotes Compartmentalized cells with (many) organelles, e.g. nucleus Unicellular; No internal compartments in cells Source: Introduction to the Archaea (http://www.ucmp.berkeley.edu/archaea/archaea.html) (31) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 Compartmentation Mathematisch Instituut -- Nature’s diversity -E. coli ‘Tree of life’ Source: Introduction to the Archaea (http://www.ucmp.berkeley.edu/archaea/archaea.html) (31) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 22 A history of life Mathematisch Instituut (and the solar system) (time measured in years before this day…) Formation of the Sun First life forms on Earth 4.57 bio 0.5 bio 3.5 bio 2 3 4.54 bio End of life supportability Cambrian explosion of life NOW Formation of the Earth Homo sapiens First dinosaurs First bacteria First multicellular organism 3.5 bio 0.5 bio 1 First fungi 2 bio 1.5 bio First plants 0.2 mio 230 mio 0.5 bio 1 3 65 mio (1 bio = 1 billion = 109; 1 mio = 1 million = 106) (32) Sander Hille Extinction of dinosaurs Spring semester 2017 Metabolic Nw. An. L2 Exchange reaction Mathematisch Instituut -- example: glycolytic pathway -Glu Extracellular glucose (nutrient) Glucose uptake Intracellular glucose-6-phosphate G6P Flucose-6-phosphate F6P Nutrients have to cross the cell membrane !! (33) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 23 Cell membranes Mathematisch Instituut Consist of a phospholipid bilayer with various proteins Fluid-like structure! Amoeba (slime mould) (Dictyostelium discoideum) Membrane lipids (34) Sander Hille Spring semester 2017 (Borislav Mitev) Metabolic Nw. An. L2 Cell membranes Mathematisch Instituut water ‘Head’: hydrophilic ‘Tails’: hydrophobic Membrane lipid(s) (Borislav Mitev) (35) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 24 Cell membranes Mathematisch Instituut water (36) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 Diversity in bacteria Mathematisch Instituut -- different membrane structures -Gram-negative and Gram-positive bacteria Examples: Bacillus anthraxis Bacillus subtilis Listeria … Cell membrane (37) Sander Hille Spring semester 2017 Cell wall Metabolic Nw. An. L2 25 Diversity in bacteria Mathematisch Instituut -- different membrane structures -Gram-negative and Gram-positive bacteria Examples: Bacillus anthraxis Examples: Escherichia coli Bacillus subtilis Salmonella … Legionella … Listeria … Periplasmic space (37) Sander Hille Plasma membrane Cell membrane Spring semester 2017 Cell wall Metabolic Nw. An. L2 A real-life example Mathematisch Instituut -- Glucose uptake by E. coli -- Glucose dissolves in plasma membrane and can enter the cell through diffusion (and leak away…) There is also an active uptake mechanism, directly converting glucose into G6P D-glucose α-D-glucose-6-phosphate (G6P) The anion (negative ion) G6P can hardly diffuse through the charged plasma membrane. (38) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 26 A real-life example Mathematisch Instituut -- Glucose uptake by E. coli -Cartoon of the active uptake mechanism: EnzIIb G6P Glu G6P EnzIIc G6P Pyr Environment EnzIIb Transmembrane transport protein EnzIIa HPr EnzI P P P P PEP G6P Phosphorelay (signalling pathway) (39) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 A real-life example Mathematisch Instituut -- Glucose uptake by E. coli -Metabolic network model for glucose uptake in E. coli: ATP Ge Gi ER1 ADP R1 Currency metabolite G6P EnzIIb ER2 Environment EnzIIbP Cofactor Intracellular Enzymes !! ER1: Diffusive uptake of glucose through cell membrane (‘uptake is positive’) (ER = ‘Exchange reaction’ – exchange between compartments) ER2: Active glucose uptake through cell membrane through EnzIIb R1: Conversion catalyzed by hexokinase (40) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 27 A real-life example Mathematisch Instituut -- Glucose uptake by E. coli -Metabolic network model for glucose uptake in E. coli (Corrected…) Ge ATP Gi ER1 ADP R1 Currency metabolite G6P Pyr ER2 Intracellular PEP Environment Cofactor Signaling molecules / enzymes have been removed ER1: Diffusive uptake of glucose through cell membrane (‘uptake is positive’) (ER = ‘Exchange reaction’ – exchange between compartments) ER2: Active glucose uptake through cell membrane through EnzIIb R1: Conversion catalyzed by hexokinase (40) Sander Hille Metabolic Nw. An. L2 Spring semester 2017 A real-life example Mathematisch Instituut -- Glucose uptake by E. coli -Detailed network graph: ATP Ge Gi ER1 ADP R1 G6P Pyr ER2 PEP Substrate graph: ADP Ge ATP Gi ADP PEP Ge G6P Gi (41) Sander Hille G6P Pyr Pyr (directed) PEP ATP (undirected) Spring semester 2017 Metabolic Nw. An. L2 28 A real-life example Mathematisch Instituut -- Glucose uptake by E. coli -Detailed network graph: ATP Ge Gi ER1 ADP R1 G6P Pyr ER2 PEP Reaction graph: R1 ER1 ER2 (R1 uses a product of ER1 (namely Gi); ER2 does not use any products of the other reactions, nor does ER1 or R1 from ER2) (42) Sander Hille Metabolic Nw. An. L2 Spring semester 2017 Summary Mathematisch Instituut -- types of reactions -Types of reactions: -- Irreversible or reversible reactions R1 R1 -- Internal or exchange reactions R1 R1 ER2 ER1 Exchange reactions transport (and possibly transform) metabolites over membranes that separate physical compartments … or are internal reactions that are part of the virtual boundary of a module (= virtual compartment) Glucose uptake ADP DHAP F6P R3 F1,6BP R4 GAP ATP Virtual exchange reactions (43) Sander Hille Spring semester 2017 Metabolic Nw. An. L2 29
© Copyright 2026 Paperzz