ReviewofBasicMathfor
ComputerGraphics
CENG315–ComputerGraphics
M.AbdullahBulbul
Sets
m∈S
n∈S
x∈T
y∈T
z∈T
m
n
setS
AxB:allpossiblepairs(a,b)wherea∈A,b∈B
A2=S,S
SxT={(m,x),(m,y),(m,z),
(n,x),(n,y),(n,z)}
S2={(m,m),(m,n),(n,m),(n,n)}
x
y
z
setT
Usefulsets
Trigonometry
• Radians
• Angle=lengthoftheunitcirclethatiscutbythetwodirecOons.
• Angles
• degrees=radians*180/π
• Pythagoreantheorem
• Righttriangle
•
•
•
•
•
•
sin(x)=?
cos(x)=?
tan(x)=?
cot(x)=?
csc(x)=1/sin(x)
sec(x)=1/cos(x)
• Unitcircle
Usefulidentities
• sin(-x)=-sin(x)
• cos(-x)=cos(x)
• tan(-x)=-tan(x)
• sin(π/2-x)=cos(x)
• cos(π/2-x)=sin(x)
• tan(π/2-x)=cot(x)
Usefulidentities
• PythagoreanidenOOes:
• sin2(x)+cos2(x)=?
• sec2(x)–tan2(x)=?
• sin(a+b)=sin(a)cos(b)+sin(b)cos(a)
• sin(2a)=2sin(a)cos(a)
• sin(a-b)=sin(a)cos(b)-sin(b)cos(a)
• cos(a+b)=cos(a)cos(b)–sin(a)sin(b)
• cos(2a)=cos2(a)–sin2(a)
• cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
Vectors
• Avector:alength&adirecOon
a
• Usuallywri\enasa(bold)
• AbsoluteposiOonisnotimportant
• Magnitude=||a||
• Usedtostoreoffsets,displacements,locaOons
• TodefinealocaOonyouneedanorigin
Vectoraddition
a+b
b
a
commutaOve:a+b=b+a
a
b
b+a
Unaryminusandsubtraction
a
-a
• ChecksubtracOononaparallelogram
2DCartesianSpace
• a=
xa
ya
• aT= xaya
4x
• a= 3y
2DCartesianSpace
• A2Dvectorcanbewri\enasacombinaOonofanytwononzerovectorsthatarenotparallel
• Linearindependence
• c=k1a+k2b
• Exercise
Linearindependence
Linearindependence&basis
• Anytwoparallelsthatarenotparallelformsa2Dbasis.
• CangoanywherebyacombinaOonofthem
• Unitvectorsarespecialcase
• Orthonormalbasis
• Simplifiesthings
VectorMultiplication
• Dot(scalar)product
• Crossproduct
Dot(scalar)product
b
• a.b=b.a=?
x
a
Dot(scalar)product
b
x
• a.b=b.a=?
• =||a||||b||cos(x)
a
• DistribuOve:a.(b+c)=a.b+a.c
• x=cos-1(a.b/(||a||||b||))(mostcommonuse)
Dotproductincartesiancoordinates
xa
xb
• a.b=.=?
ya
yb
Dotproductincartesiancoordinates
xa
xb
• a.b=.=?
ya
(Fairlysimple)
=xaxb+yayb
yb
Commonusesofdotproduct
• Findanglebetweentwovectors(lightandsurfaceexample)
• ProjecOonofavectoronanotherone
• Computedeasilyoncartesiancomponents
Projectionofavectoronanother
• ba
b
x
ba
a
Projectionofavectoronanother
• ba
b
x
ba
• inferit(5minutes)
a
Crossproduct
• Theresultofadotproductwasscalar
• Theresultofacrossproductisavector
• Perpendiculartobothvectors
• Length:
• Areaoftheparallelogram
• ||a×b||=||a||||b||sin(ϕ)
• DirecOon:
• Righthandrule
Crossproduct
• X×Y=+Z
• Y×X=-Z
• Y×Z=+X
• Z×Y=-X
• a×b=-b×a
• a×a=?
• a×(b+c)=a×b+a×c
• Z×X=+Y
• X×Z=-Y
• Be\erontheboard
CrossproductonCartesianspace
xyz
aybz–azby
• a×b==
axayaz
azbx–axbz
bxbybz
axby–aybx
Orthonormalbases
• Managingcoordinatesystemsisimportant!
• Orthonormalbasesisthekey.
In2D:uandvformanorthonormalbasisiftheyare
• Eachofthemareunitlength
||u||=||v||=1
• Orthogonaltoeachother
u.v=0
Orthonormalbases
In3D:u,vandwformanorthonormalbasisiftheyare
• Allofunitlength
||u||=||v||=||w||=1
• Anypairofthemareorthogonaltoeachother
u.v=0,v.w=0,u.w=0
• Righthandedifw=u×v
• Otherwiselenhanded
• Thereareinfinitelymanyorthonormalbases
Orthonormalbases
In3D:u,vandwformanorthonormalbasisiftheyare
• Allofunitlength
||u||=||v||=||w||=1
• Anypairofthemareorthogonaltoeachother
u.v=0,v.w=0,u.w=0
• Righthandedifw=u×v
• Otherwiselenhanded
• Thereareinfinitelymanyorthonormalbases
Canonicalorthonormalbasis
• Cartesiancanonicalorthonormalbasis
• x=(1,0,0)
• y=(0,1,0)
• z=(0,0,1)
Constructinganorthonormalbasis
givenasinglevector
• Easierontheboard
Matrix
• Whatisamatrix
• IdenOtymatrix
• Transpose
• Determinant
• MatrixvectormulOplicaOon
• MatrixmatrixmulOplicaOon
© Copyright 2026 Paperzz