Temperature-dependent mutational robustness can explain faster molecular evolution at warm temperatures, affecting speciation rate and global patterns of species diversity Mikael Puurtinen 1,2* 1 1,2 1,3 1,2 1,4 , Merja Elo , Matti Jalasvuori , Aapo Kahilainen , Tarmo Ketola , Janne S. Kotiaho , 1 Mikko Mönkkönen , Olli T. Pentikäinen 1,5 Correspondence to: [email protected] Accepted for publication in Ecography, doi: 10.1111/ecog.01948 Abstract Distribution of species across the Earth shows strong latitudinal and altitudinal gradients with the number of species decreasing with declining temperatures. While these patterns have been recognized for well over a century, the mechanisms generating and maintaining them have remained elusive. Here, we propose a mechanistic explanation for temperature-dependent rates of molecular evolution that can influence speciation rates and global biodiversity gradients. Our hypothesis is based on the effects of temperature and temperature-adaptation on stability of proteins and other catalytic biomolecules. First, due to the nature of physical forces between biomolecules and water, stability of biomolecules is maximal around +20°C and decreases as temperature either decreases or increases. Second, organisms that have adapted to cold temperatures have evolved especially flexible (but unstable) proteins to facilitate catalytic reactions in cold, where molecular movements slow down. Both these effects should result in mutations being on average more detrimental at cold temperatures (i.e. lower mutational robustness in cold). At high temperatures, destabilizing water-biomolecule interactions, and the need to maintain structures that withstand heat denaturation, should decrease mutational robustness similarly. Decreased mutational robustness at extreme temperatures will slow down molecular evolution, as a larger fraction of new mutations will be removed by selection. Lower mutational robustness may also select for reduced mutation rates, further slowing down the rate of molecular evolution. As speciation requires the evolution of epistatic incompatibilities that prevent gene flow among incipient species, slow rate of molecular evolution at extreme temperatures will directly slow down the rate at which new species arise. The proposed mechanism can thus explain why molecular evolution is faster at warm temperatures, contributing to higher speciation rate and elevated species richness in environments characterized by stable and warm temperatures. 1 Department of Biological and Environmental Science, 40014 University of Jyvaskyla, Finland. 2 Centre of Excellence in Biological Interactions, 40014 University of Jyvaskyla, Finland. 3 Current address: Metapopulation Research Centre, 00014 University of Helsinki, Finland 4 Natural History Museum, 40014 University of Jyvaskyla, Finland. 5 Nanoscience Center, 40014 University of Jyvaskyla, Finland. 1 Introduction Theglobaldistributionofspeciesrichnessisfarfromrandomoruniform.Instead,speciesrichnessshowsa numberofgeographicalgradientsacrosstheEarth.Perhapsthemoststrikingofthesepatternsisthe decreasingnumberofspeciesfromtheequatortowardthepoles,thelatitudinaldiversitygradient(LDG). LDGshavebeendocumentedforawidevarietyoftaxainbothaquaticandterrestrialenvironments (Hillebrand2004a).Oververylongtime-scales,theLDGhasbeenfoundtobesteeperduringperiods characterizedbycolderandmoreseasonalclimates,suggestingthatclimatehasanimportantrolein determiningdistributionofspeciesdiversityovertheglobe(Yasuharaetal.2012,Mannionetal.2014). AlthoughalargenumberofhypotheseshavebeenputforwardtoexplainLDGs(Rohde1992,Willigetal. 2003,Mittelbachetal.2007),theideathatgreaterspeedofevolutionanddiversificationinlower(warmer) latitudesmayexplaincurrentLDGshasgatheredempiricalsupportoverthepastfewdecades(Gillmanand Wright2014).This“evolutionaryspeedhypothesis”suggeststhattemperatureaffectstherateofspeciation byinfluencingmutationratesand/oraveragegenerationtimes(Rohde1992,EvansandGaston2005,Gillman andWright2014). Thereisampleandstrongevidencethatevolutionaryspeed,measuredasrateofmolecularevolution,isfaster atwarmertemperatures(GillmanandWright2014).Positiveassociationwithvariablesrelatedtothe functionaltemperatureoforganismsandtherateofmolecularevolutionhasbeenreportedacrossmetazoa (Gilloolyetal.2005),inmarineprotists(AllenandGillooly2006),infish(Estabrooketal.2007,Wrightetal. 2011),inamphibians(Wrightetal.2010),inaquaticturtles(Lourencoetal.2013),infloweringplants(Davies etal.2004),andintrees(Wrightetal.2006,Gillmanetal.2010).Associationsbetweenratesofmolecular evolutionandnetdiversification(speciationminusextinction)havebeenreportedfrombirdsandreptiles(Eo andDeWoody2010,Lanfearetal.2010)andfromfloweringplants(BarracloughandSavolainen2001),but notfrommammals(Goldieetal.2011).Arecentreviewsummarizingpaleoecologicalandphylogenetic studiesconcludedthat“thereisstrongevidencethatabroadrangeoflifeformshaveexperiencedfasternet ratesofdiversificationatlowerlatitudes”(GillmanandWright2014). Inarecentstudy,JetzandFine(2012)modelledglobalterrestrialvertebraterichnessacrossbioregionsusing environmentaldatafrompast55millionyears.Forectotherms,temperaturealoneexplainedmoreofthe variationincurrentrichnessthananyoftheothervariables(productivity,area,ortheircombination integratedoverthe55millionyears).Forbothecto–andendotherms,thebestmodelsalwaysincluded temperature.Thisstudystressestheindependenteffectoftemperatureonterrestrialvertebraterichness, especiallyforectotherms.Alsostudiesfrommarinesystemssuggestthattemperature,insteadofe.g. productivity,isthemostimportantfactorexplainingbothcurrent(Royetal.1998,Rutherfordetal.1999, Romboutsetal.2009,Romboutsetal.2010,Tittensoretal.2010),butseeMcCallumetal.(2015)),and historicalpatternsofspeciesrichness(Huntetal.2005,Yasuharaetal.2012).Thestrongandconsistent 2 marineLDGsarealsonoteworthy,astheycannoteasilybeexplainedbyarea,timeforspeciation,spatial heterogeneity,orwateravailabilitythathavebeenproposedasmechanismsunderlyingterrestrialLDGs (Hillebrand2004a,Hillebrand2004b). However,themechanismsbywhichtemperatureacceleratesgeneticevolutionanddiversificationremain elusive(EvansandGaston2005).Previously,modelsbasedontheeffectsofbodysizeandtemperatureon metabolicratehavebeenproposedtoexplainmutationratesandglobaldiversitypatterns.Themetabolic theoryofecology(MTE;Brownetal.2004)predictstheeffectsofbodysizeandtemperatureonmetabolism throughconsiderationsofvasculardistributionnetworksandbiochemicalkinetics.Allenetal.(2006) combinedMTEwiththeoryofpopulationgeneticstopredicttheeffectoftemperatureonratesofgenetic divergenceamongpopulationsandspeciationincommunitiesbyspecifyingpopulationsize,communitysize, andmutationrateastemperature-dependentparameters.ThetheoryhasbeenfurtherelaboratedbyStegen andco-workers(Stegenetal.2009,Stegenetal.2012)toincorporatetheeffectsoftemperatureonecological interactionsanddynamicsofresourcesupply.ThevalidityofassumptionsunderlyingMTEisnevertheless stronglycontested(Priceetal.2012,Storch2012,Glazier2014). Akeyassumptioninmetabolictheoriesforbiodiversityistemperature-dependenceofmutationrate,which hasbeensuggestedtobecausedbyelevatedproductionofDNA-damagingoxygenradicalswithhigher metabolism(MartinandPalumbi1993).However,thereisnoevidenceforadirectlinkbetweenmetabolic rateandmolecularevolution(MooersandHarvey1994,Hoffmannetal.2004,Lanfearetal.2007),anda directtestoftheroleofoxidativestressinincreasingheritablemutationsalsofailedtofindsupportforthis mechanism(Joyner-Matosetal.2011).Furthermore,itisnotclearhowhighsomaticmetabolicratecould influencegerm-linemutations(Lanfearetal.2007,Galtieretal.2009).Theproductionofoxygenradicalsby metabolismisalsoexpectedtomostlyaffectmitochondrialDNA,whereasnuclearDNAshouldbemuchless affected(MartinandPalumbi1993,Hoffmannetal.2004).Thedirecteffectofmetabolicrateonmutations maythusbeoflimitedimportancetooverallgenomicmutationrates.Indeed,arecentreviewonmolecular evolutionandLDGconcludedthat“metabolicratemayinformlittleonratesofmutationormolecular evolutionandwearenoclosertounderstandingthedriverofvariationintherateofmolecularevolutionand theformationofthelatitudinalbiodiversitygradient”(Dowleetal.2013). MutationsoftenoccurintheprocessofDNAreplication,andfactorsthatincreasetherateofgermlinecell division,especiallyshortergenerationtimes,couldthusexplainfasterratesofmolecularevolutionperunit timeinwarmertemperatures(Rohde1992).Shortergenerationtimeshavebeenassociatedwithfaster molecularevolutioninbirds(MooersandHarvey1994),mammals(Bromhametal.1996,Welchetal.2008) andinvertebrates(Thomasetal.2010).However,itispossiblethatselectionagainstsomaticmutationsin long-livedorganisms,andnotgenerationtimeperse,isthecrucialfactoraffectingmolecularevolution (Nabholzetal.2008,Galtieretal.2009,Lanfearetal.2013,Bromhametal.2015).Althoughthereisevidence forastatisticalassociationbetweengenerationtimeandmolecularevolution,dataontheassociationbetween 3 ambient(orphysiological)temperatureandgenerationtimeisscarce(McCoyandGillooly2008showthat highertemperaturesareassociatedwithshorterlifespans),makingitdifficulttoevaluatethegeneral importanceofthegenerationtimehypothesisontheassociationbetweentemperatureandratesofmolecular evolution.Ontheotherhand,temperaturehasbeenlinkedtotherateofmolecularevolutioneveninthe absenceofgenerationtimedifferencesine.g.hummingbirds(Bleiweiss1998)andtropicalplants(Wrightet al.2006). Therearealsootherfactorsthatmayaffectsubstitutionrates,butwhoserelationshipwithtemperatureor latitudeisnotwellknown.Suchfactorsincludethedegreeofspermcompetition(Wong2014),organismsize (Welchetal.2008,e.g.Bromhametal.2015),andpopulationsize(seeDowleetal.2013).Disentanglingthe effectsofseveral,oftenintercorrelated,factorsonmolecularevolutioncanbedonebyincorporatingmultiple factorstothesamemodel(seee.g.MartinandPalumbi1993,MooersandHarvey1994,Welchetal.2008, Wong2014).Itisalsoimportanttobearinmindthatnotallgenesormutationsareexpectedtobeequally affectedbyvariousfactors.Forexample,spermcompetitionintensityisnotexpectedtoinfluence mitochondrialDNAevolution,sincemitochondriaareonlyinheritedfromfemales. Temperature and mutational robustness Wesuggestthattheeffectsoftemperatureonmutationalrobustnessofproteinsandothercatalytic biomolecules(e.g.ribozymes)mayprovideamechanisticexplanationfortheslowerrateofmolecular evolutioninenvironmentswhereambienttemperaturesarecold(highlatitudes,highaltitudes,deepoceans). Inthispaper,wefocusmainlyontheeffectsofcoldtemperaturesonmutationalrobustnessandmolecular evolution.Ourhypothesishoweversuggeststhatsimilarpatternsshouldalsobeevidentathightemperatures, andwewillcommentevidenceforslowdownofmolecularevolutionathightemperatures,whereappropriate. Temperaturemayaffectmutationalrobustnessintwoways.First,regardlessofthestructuraldetailsof proteins,proteinthermodynamicstabilityatneutralpHismaximalaroundroomtemperature(Fig.1A).This isbecausethehydrophobiceffect,themainforcedrivingproteinfolding,ismaximalatthistemperature (Privalov1990,Privalov1997,Kumaretal.2002).Thedecreaseinstabilityatcoldertemperaturescouldbe explainedthroughformationsofsolvent-separated-configurationswherethenonpolarproteincoreis hydratedbyathinlayerofwater(Privalov1990,Dias2012).Averyrecentstudysuggestthatinlivecells, cold-denaturationofproteinscanbeaseriousconcernatrealisticphysiologicaltemperatures(Danielssonet al.2015). Second,andperhapsmoreimportant,proteinsoforganismsthathaveevolvedtofunctionincold environmentshaveevolvedtobethermodynamicallylessstable(Fig.1B).Itisawell-establishedempirical factthatthereisatightassociationbetweenthetemperaturetowhichanorganismsisadaptedtoandthe denaturationtemperatureofproteins(seee.g.Fig.1inSomero1995).Theloweredstabilityofcold-adapted 4 proteinsisduetostructuralpropertieslikedecreasedcorehydrophobicity,increasedsurfacehydrophobicity, increasedmovementofinternalgroups,andreducednumberofinterdomainandintersubunitinteractions (Feller2003,SiddiquiandCavicchioli2006).Thedecreaseinthermodynamicstabilityismostlikelya consequenceofselectionforincreasedmechanicalflexibilitynecessaryformaintainingactivityoftheprotein inthecoldenvironmentwheremolecularmotionsslowdown(FellerandGerday2003,DePristoetal.2005, SiddiquiandCavicchioli2006).Ithasevenbeenarguedthatcold-adaptedproteinsmayhavereachedastate thatisclosetothelowestpossiblestability,i.e.thattheycannotbecomelessstablewithoutlosingthenative andactiveconformation(FellerandGerday2003).Importantly,coldadaptationdoesnotseemtoshiftthe temperatureofmaximalstability,butreducesthermodynamicstabilityatalltemperatures(Cipollaetal. 2012)(seeFig.1B). Figure1.Stylizedeffectsoftemperatureonproteinstability.Theintensityoftheorangecolourindicatesthe probabilitythatarandommutationwillrendertheproteinnon-functional,andthemutationwillthusbe removedbyselection(markedwithx).(A)Thestabilitymaximumofmoststudiedproteinsisaround+20°C.A destabilizingmutationmaynotimpairproteinfoldingandstabilityat+20°C,butatalower(orhigher) temperaturethesamemutationmaybedetrimental,andberemovedbyselection.Arecentstudy(Danielsson etal.2015)foundthatinlivecells,proteinstabilitydecreasesmuchmoredramaticallyatlowtemperatures thandepictedinthisfigure,suggestingthatcold-denaturationisaseriousconcerninrealisticphysiological temperatures.(B)Incold-adaptedorganisms(psychrophiles),proteinsareunstableasaconsequenceof selectionformaintainingflexibilityessentialforcatalysingreactions.Thelowstabilityofcold-adapted enzymesishypothesizedtoresultinverylargeproportionofmutationsbeingharmfulandbeingremovedby selection. Thermostabilityisimportantformolecularevolutionbecausethermolabileproteinshavelowermutational robustness.Thegreatmajorityofamino-acidchangingmutationsaredestabilizing(TokurikiandTawfik 2009).Mutationsarelikelytorenderathermolabileproteinnon-functionalbecausethemutatedproteinwill notfoldtoitsnativeform,orbecauseloweredstabilityreducestheconcentrationofdissolvedproteindueto increasedaggregationorproteolysis(Sanchez-Ruiz2010).Misfoldingproteinsmayevenhavetoxiceffects, 5 furtherincreasingthedeleteriousconsequencesofdestabilizingmutations(Geiler-Samerotteetal.2011).A recentcomputationalstudyconcludedthatmorethermodynamicallystableproteinsaremorerobustagainst randomamino-acidreplacements(Hormoz2013).Thermostabilityhasalsobeenfoundtosubstantially increasethelikelihoodofproteinsmaintainingfunctionalityaftermajorrestructuring(Besenmatteretal. 2007),andthelikelihoodofevolvingneworimprovedfunctions(Bloometal.2006).Thermostabilityhas furtherbeenfoundtodecreasetheharmfuleffectofmutagenexposureinanRNAvirus(Domingo-Calapetal. 2010).Atthelevelofamino-acidsubstitutions,lessdestabilizingsubstitutionsaremorelikelytobefixedin evolvinglineages(Godoy-Ruizetal.2004,Godoy-Ruizetal.2006),supportingthenotionthatstabilityeffects ofmutationsareimportantindeterminingtherateofproteinsequenceevolution. Temperature effects on mutation and substitution rates Inthissection,weoutlinetheeffectsoftemperatureonmutationandsubstitutionrates.Thelogicofthe argumentispresentedwithaflow-chartinFigure2,andinFigure3wegiveacalculatedexampleofthe relationshipbetweentemperatureandkeypropertiesofmutationsandsubstitutions,basedontheformulas derivedbelow. Insexualorganisms,mutationrateisthoughttobeprimarilydeterminedbythebalancebetweenreductionin theharmfuleffectsofnewmutationsandthecostsofmorestringentproof-reading(Dawson1998, Sniegowskietal.2000).Dawson(1998)derivedthesolutionforevolutionarystablemutationratewhen mutationsthatdecreasethefitnessofanindividualbyafraction(1–s)occuratinfinitenumberofunlinked diallelicloci,andwhenmodifiersthatdecreasemutationratedirectlydecreaseindividualfitness.Thesolution givenbyDawson(1998)fortheevolutionarystablemutationrate(U*)is ∗ = ( )− 1+ , (1) whereα(U)describestherelationshipbetweenthemutationrateUcodedbythemodifier,andthedirectcost (proportionalreductioninfitness)ofthemodifiertoindividualfitness.Aplausibleexplicitfunctionforα(U)is ( ) = 1− (2) , wherekisascalingfactordeterminingtherateatwhichthecostsofreducingthemutationratedepress individualfitness.Withthisfunction,wecanwritethefunctionforU*as ∗ = 1− − 1+ , (3) wherethefunctiontobemaximizedisthefitnessofthemodifierallele,w: 6 =1− − 1+ (4) Theevolutionarilystablemutationrateinfitness-affectinglociU*canbefoundbydifferentiatingwwith respecttoU = − ,andsolving = 0withrespecttoU,whichyields ∗ = ln + (5) . Thesolution(eq.5)impliesthatmutationrateshouldevolvetolowerlevelwhennewmutationsaremore harmful(i.e.,whensincreases).Ourhypothesissuggeststhatmutationsaremoreharmfulincold environmentsandinorganismswithlowfunctionaltemperatures,duetoboththedirecteffectoftemperature tomoleculestabilityandtheevolvedlowerthermostabilityofcold-adaptedproteins,andthiswillresultin reducedmutationrateincoldtemperatures.Inhightemperatures,theneedtomaintainproteinstructures thatareabletowithstandheatdenaturationshouldalsomakemutationsmoreharmfulthaninbenign temperatures.Toillustratetheargument,letusassumethattheharmfulnessofmutations(s)isafunctionof temperature(T,in°C),withaminimum(m)aroundroomtemperature(25°C;thisvalueisarbitrarilychosen toyieldapatternroughlymatchingempiricaldata).Notethattherelationshipformalizedinfunction6does notapplytoanysingleprotein,butisaheuristicrelationshipintendedtoportraythecombinedeffectsof temperatureadaptationandprotein-solventinteractionsonmutationaleffects.Wepositthatthefurther temperaturedeviatesfromroomtemperature,themoreharmfulmutationsbecome. = (25 − ) + (6) , whereaisaconstantscalingfactor(Fig.3A).Substitutingeq.6toeq.5andsimplifying,wegetthe evolutionarystablemutationrateasafunctionoftemperature(Fig.3A): ∗ = [ (1 + ) + (25 − ) ] ln + (25 − ) . (7) Notingthatthepersitemutationrateµisproportionalthegenome-widemutationrateU,andthattherateof neutralsubstitutionsonlydependsonmutationrate(HartlandClark1997),therateofneutralsubstitutions (e.g.synonymousmutationsthatdonotchangetheamino-acidinaprotein,dS)issimplyproportionaltothe mutationrate ∝ ∝ ∗ andcanbemodelledas = ∗ , (8) 7 wherepisascalingfactortotranslatethegenomicmutationratetoper-locusmutationrate.Wecanthus makethequalitativepredictionthattherateofneutralsubstitutionswillbehighestattemperaturesnearthe roomtemperature,anddecreaseasthetemperatureapproaches0°C,orreacheshightemperatures(Fig.3B). Therateofsubstitutionswithfitnesseffects(e.g.mostnon-synonymousmutationsthataltertheamino-acidin aprotein,dN)ismoredifficulttopredict,asitdependsonthedistributionofmutationeffectsandonthe effectivepopulationsize(Lanfearetal.2014).Accountingforthesefactorsisbeyondthescopeofthecurrent treatment.However,asthegreatmajorityofmutationswithfitnesseffectsareharmful(Eyre-Walkerand Keightley2007),andasthelikelihoodoffixationdecreasesrapidlyastheharmfulnessofmutationsincreases (CrowandKimura1970),forcurrentpurposeswecanmodelratesubstitutionsatfitness-affectinglocias = (9) wherebisascalingfactordeterminingtherateofdeclineinfixationprobabilitywithincreasings,andthus relatestotheeffectivepopulationsize(largerbmeansmoreefficientselection,correspondingtolarger effectivepopulationsize)(Lanfearetal.2014).Thisformalizationpredictsthattherateofsubstitutionswith fitnesseffectsdecreasesrapidlyatextremetemperatures,wheremutationsaremoreharmful(Fig.3B). Theideathattheharmfulnessofmutationsdependsontemperature,andisreflectedinmutationand substitutionrates,hasbeenputforwardbeforeinthecontextofslowmolecularevolutioninbirdsand thermophiles.Prageretal.(1974)notedthatbirdsseemtohaveaslowerrateofmolecularevolutionthan othervertebrates,andsuggestedthatthismightbeexplainedbythehighbodytemperatureofbirds.Since then,severalstudieshaveconfirmedthatmolecularevolutionisslowerinbirdsthanmammals,butfaster thaninectothermicvertebrates.StanleyandHarrison(1999),studyingcytochromebevolution,showedthat selectionagainstnonsynonymousmutationsisstrongerinbirdsthaninmammals.Thesefindingsgivestrong supportforthehypothesisthathighbodytemperaturesinbirdsimposestrictrequirementsforproteinsand leadtoreducedtoleranceforaminoacidreplacements. Inthermophiles,anecdotalevidencethatmanymissensemutations(mutationsthatchangetheamino-acidin aprotein)arewelltoleratedinstandardgrowthtemperaturesbutbecomelethalatelevatedtemperatures leadDrake(2009)toformulatethe“hypothesisofdangerousmissense”:theaveragemissensemutation harmsthermophilesmorethanmesophiles.Inaccordancewiththishypothesis,Friedmanetal.(2004)found thattheratioofnon-synonymoustosynonymousmutations(dN/dS)waslowerinthermophilicthanin mesophilicmicrobes,andattributedthisfindingtostrongerpurifyingselectionagainstamino-acidchanging mutationsathightemperatures.Drake(2009)foundthattherateofspontaneousmutationislowerin thermophilesthaninmesophiles,andsuggestedthatthelowermutationrateisanadaptationtothemore harmfuleffectsofmutationsinthermophiles.However,asmanystudiesdonotincludethermophilestothe data(e.g.Gilloolyetal.2005,Gilloolyetal.2007),anddonotconsidermodelswhereincreasingtemperature 8 couldslowmolecularevolutiondownathigh(above40°C)temperatures,itisnotsurprisingthatthe phenomenonisnotwidelyacknowledged. Ourhypothesissuggeststhatlikehightemperatures,alsolowtemperaturesleadtoreducedmutational robustness(Fig.3C),potentiallyexplainingwhyratesofmolecularevolutionandspeciationareslowerinin coldenvironments(e.g.athighlatitudesandaltitudes.Weareawareoftwodatasetsthatcaninformaboutthe effectofcoldertemperaturesonstrengthofselectionagainstnon-synonymousmutations.Gilloolyetal. (2007)showedthattemperaturespeedsupbothsynonymousandnon-synonymousevolutionoveradiverse setofanimaltaxa(rangingfrompsychrophilestomesophiles).Althoughnotreportedintheiroriginal manuscript,therelationshipbetweentemperatureanddN/dScanbeeasilycarriedoutfromdatapublished withthemanuscript.Intriguingly,datasuggeststhatselectionagainstamino-acidchangingmutationsin cytochromebisindeedstrongerincoldertemperatures(Pearsoncorrelationbetweentemperatureand dN/dS;r=0.426,n=48,P=0.003).Fortheotherstudiedgene(nicotinamideadeninedinucleotide),therewas anon-significantrelationshiptotheoppositedirection(r=-0.311,n=36,P=0.065).Wrightetal.(2011) studiedcytochromebevolutioninmarinefishes,anddidnotfindasignificantassociationbetween temperatureanddN/dS.Moreempiricalresearchisclearlyneededtoassesstheeffectofcoldtemperatures onselectionagainstnon-synonymousmutations,andconsequentselectionforreducedmutationrates. However,itmustbenotedthatsynonymouschangesmaynotallbeneutral(Shabalinaetal.2013)ascertain codonscanservemultiplefunctionsby,forexample,codingforanaminoacidwhilesimultaneouslyactingasa bindingsitefortranscriptionalregulators(Stergachisetal.2013). Furthermore,organismscanprefersome codonsoverothers.Theusageofsynonymouscodonsappearstofollowtheproportionsofavailabletransfer RNAmoleculesinthecell,andsuboptimalcodonusageislikelytoselectformutationsthatre-establishthe codon-tRNAbalance(Qianetal.2012).IftheconcentrationsoftRNAsareknown,themutationratetowards balancecouldbemeasuredbycomparingdifferenttypesofrecentlyacquiredgenes.Forsomegenes,thisrate maybenecessarytobetakenintoaccountwhendN/dSisdetermined. 9 Figure2.Theeffectsoftemperatureonmutationandspeciationrates.Atextremetemperatures(loworhigh), mutationswithfitnesseffectsaremoredetrimental,whichdirectlyslowsdownevolutionatsitesthataffect fitness(e.g.non-synonymoussubstitutions,dN).Becausemutationsareonaveragemoredetrimentalat extremetemperatures,selectionfavoursreducedmutationrate,andslowsdownevolutionatsiteswithout fitnessaffectsaswell(e.g.synonymoussubstitutions,dS).Slowermutationratefurtherslowsdownevolution atsitesthataffectfitness.Slowevolutionofprotein-codingsequencesmeansthatgeneticincompatibilities betweenisolatedpopulationsevolveataslowerrate,reducingtherateatwhichnewspeciesform. 10 Figure3.Effectsoftemperatureonmutationandsubstitutionrates.A.Wehypothesizethatmutationswillbe moredetrimentalinbothlowandhightemperatures(redline,leftaxis),andthiswillselectforreduced mutationratesatextremetemperatures(blueline,rightaxis;eq.7).B.Thesynonymoussubstitutionrate(dS; continuousline)mirrorsthemutationrate(eq.8),butthenon-synonymoussubstitutionrate(dN;dashed line)isdepressedatextremetemperatures,duetothemoreintensepurifyingselection(eq.9).C.Theratioof substitutionratesatcodingandnon-codinglocishowsstrongeffectsoftemperature,beingpositiveatthecold temperaturesandnegativeathightemperatures.Valuesusedinthecalculations:k=0.5;a=8×106;m=0.05; p=10-7;b=50. 11 Operative temperatures in ecto- and endotherms Theoperativetemperaturesoforganismsareofcentralimportancetoourhypothesis.Forterrestrial ectothermsthatcanseekshadetoavoiddirectsunlight,maximaloperativetemperaturesshowlittle latitudinalgradientfromtheequatortolatitudesupto50degrees,beingaround25 °Cto30°C.However, minimaloperativetemperaturesdeclinefromaround22 °Cneartheequatorto0°Corbelowathigher latitudes(seeFigure4inSundayetal.2014).Athigherlatitudes,proteinsthereforeneedtooperateandbe stableinbothcoldandwarmenvironments.Wesuggestthatwithintherangeofoperationaltemperatures encounteredbyorganismsincurrentglobalclimate(excludingexposedorday-activeorganismsinhot deserts),minimaloperationaltemperaturesexertthestrongestselectionagainstnon-synonymousmutations andexplaintheslowerrateofmolecularevolutioninectothermsathighaltitudesandlatitudes Anumberofstudieshavefoundslowerratesofmolecularevolutionatcoldambienttemperaturesalsoin endotherms.Bleiweiss(1998) showedthattherateofDNAevolutioninhummingbirdsdecreaseswith altitude.Morerecentstudieshavereportedslowercytochromebevolutionathigherlatitudesandaltitudesin mammals(Gillmanetal.2009)andinbirds(Gillmanetal.2012).Atfirstsight,thesefindingswouldseemto suggestthatsomeotherfactorthantemperaturemustdrivetherateofmolecularevolution,sinceendotherms cancontroltheirbodytemperature.However,manybirdsandmammalsreducetheirbodytemperatureclose toambienttemperaturestoconserveenergyduringadverse(cold)conditionsbygoingintotorpor.Low torporbodytemperatureswerespeculatedasonepossiblecausefortheobservedslowdownofmolecular evolutionbyBleiweiss(1998)andGillmanetal.(2009).Wesuggestthatcoldtorporselectsforcold-active proteinsthatfacilitateheatingupthebodyfromtorportoactivetemperature;seee.g.Williamsetal.(2011) forrapidchangesinthecorebodytemperatureofahibernatinggroundsquirrel.Hence,likepsychrophiles, endothermsthatregularlygointocoldtorpormayhaveevolvedthermolabileproteinstoenhancecatalytic activityincold,andthishascoincidentallyincreasedmutationalsensitivity.Inmammals,temporalvariation inbodytemperaturesincreaseswithincreasinglatitudeanddecreasingaveragetemperature(Boylesetal. 2013),supportingthesuggestionthatendothermfunctionaltemperaturescanfollowenvironmental temperatureclines. Althoughwesuggestthatminimalratherthanmaximaloperationaltemperaturesaremoreimportantin limitingratesofmolecularevolutionwithintheconditionsofcurrentclimate(excludinghotdeserts),the situationmaybeverydifferentifglobalclimatewasmuchwarmer.Elevatedtemperaturesexertstronger boundariestoorganismalsurvivalthanlowtemperatures,possiblybecauseofthedestabilizingeffectsofheat onproteins(Araujoetal.2013).Ifglobaltemperaturesweretoincreasesignificantly,wecouldthusexpect diversitytodeclineinwarmestregions,bothviaextinctionandpossiblyalsoviaslowdowninmolecular evolution.Indeed,duringtheextremegreenhouseconditionsca.250Mya,equatorialregionsweredevoidof mostterrestrialandmarinetaxapresentinotherpartsoftheworldatthattime(Sunetal.2012) 12 Genetics of speciation Completionofspeciationrequirestheevolutionofepistaticgeneticincompatibilitiesthatpreventgeneflow betweenincipientspeciesbycausinghybridinviabilityorinfertility.Suchincompatibilitiesarisemosteasily inpopulationsthatarereproductivelyisolated.AsoriginallyexplainedbyBateson,Dobzhansky,andMuller, mutationsthatareadaptiveorneutralinthepopulationtheyoriginatedincanbefunctionallyincompatible whenbroughttogetherincross-populationhybrids(Presgraves2010a).Recently,molecularstudieshave beguntorevealtheexactidentitiesandfunctionsofsomesuchhybridincompatibilitygenes.Thegreat majorityoftheidentifiedlociareprotein-codinggenes(Presgraves2010b,Presgraves2010a).Iftherateof amino-acidsubstitutionsislowerincoldtemperatures,aswehypothesize,coldtemperatureswillslowdown thespeciationrate.Speciationratewillslowdownirrespectivewhetherthelociunderlyingincompatibility evolveneutrally,orwhethertheyareunderpositiveselection,e.g.duetointragenomicorintersexualconflicts (Presgraves2010a,CrespiandNosil2013),orduetoenvironmentalselectivepressures.Slowermutationrate willalsotranslatetolowerstandingepistaticgeneticvariation,meaningthatthereislessvariationthatcan potentiallyevolvetohybridincompatibilitiesbetweenisolatedpopulations(Cutter2012,Corbett-Detigetal. 2013). Assessing the validity of different hypotheses Wehaveproposedamechanismthatcanexplainthestrongandconsistentassociationsbetweentemperature, molecularevolution,diversification,andglobalpatternsofspeciesdiversity.Oursuggestedmechanismis basedongeneralbiophysicalpropertiesofproteinsandotherbiomolecules(likeribozymes),andhence appliestoallorganismsregardlessofthetypeofenvironmentortrophicposition.Currentlythemostpopular hypothesisforexplainingtheassociationbetweentemperatureandmolecularevolutionistheMetabolic TheoryofEcology(MTE;Brownetal.2004,Gilloolyetal.2005,AllenandGillooly2006,Gilloolyetal.2007), whichproposesthatmass-specificmetabolicratesarelinearlyandpositivelyassociatedwithratesof molecularevolution.Table1listsanumberofpredictionsthatdifferbetweenMTEandourtemperaturedependentmutationalrobustnesshypothesis,allowingforcomparisonofthetwohypotheses.Ourhypothesis isbasedontheuniqueassumptionthathomologousproteinsfromorganismsfromcold(orhot)temperatures willbemoresensitivetorandomamino-acidsubstitutionsatoperativetemperaturesthanproteinsfrom mesophilicorganisms.Testingthisassumptionwillbecrucialforassessingthevalidityofthemechanism proposedinthisarticle. 13 Table1.Differingpredictionsforpatternsbetweentemperatureandmolecularevolutionbetweenthe metabolictheoryofecologyandthetemperature-dependentmutationalrobustnesshypothesispresentedin thisarticle.Seemaintextfordatabearingonthesepredictionsandfurtherdiscussion. Metabolictheoryofecology (MTE) Relationshipbetween temperatureandper generationmutationratein ectotherms Relationshipbetween operativetemperatureand dN/dS(lowerdN/dSindicates strongerpurifyingselection) Relationshipbetween operativetemperatureandrate ofsynonymousmutations(per timeunit) Relationshipbetween environmentaltemperature andrateofmolecularevolution inendotherms Norelationship(Gilloolyetal. 2005,Gilloolyetal.2007) Norelationship(Gilloolyetal. 2007) Increasing,practicallylinear (aftercontrollingforbody mass-0.25). Fororganismofequalsize, molecularevolutionshouldbe fasterincoldenvironments sinceactivemetabolicrate increaseswithdecreasing temperature(Andersonand Jetz2005,Clarkeetal.2010). Temperature-dependent mutationalrobustness hypothesis Hump-shaped(increasingfrom psycrophilestomesophiles; decreasingfrommesophilesto thermophiles) Hump-shapedfrom psycrophilestothermophiles. Hump-shapedfrom psycrophilestothermophiles (aftercontrollingforpossible effectofgenerationtime). Slowerincoldenvironments (forspecieswithcoldtorpor), sincecold-activeenzymesare lessmutationallyrobustand thusevolvemoreslowly. References Allen,A.P.andGillooly,J.F.2006.Assessinglatitudinalgradientsinspeciationratesandbiodiversityatthe globalscale.—Ecol.Lett.9:947-954. Allen,A.P.etal.2006.Kineticeffectsoftemperatureonratesofgeneticdivergenceandspeciation.—P.Natl. Acad.Sci.USA103:9130-9135. Anderson,K.J.andJetz,W.2005.Thebroad‐scaleecologyofenergyexpenditureofendotherms.—Ecol.Lett. 8:310-318. Araujo,M.B.etal.2013.Heatfreezesnicheevolution.—EcolLett16:1206-19. Barraclough,T.G.andSavolainen,V.2001.Evolutionaryratesandspeciesdiversityinfloweringplants.— Evolution55:677-683. Besenmatter,W.etal.2007.Relativetoleranceofmesostableandthermostableproteinhomologstoextensive mutation.—ProteinsStructureFunctionandBioinformatics66:500-506. Bleiweiss,R.1998.Slowrateofmolecularevolutioninhigh-elevationhummingbirds.—P.Natl.Acad.Sci.USA 95:612-616. Bloom,J.D.etal.2006.Proteinstabilitypromotesevolvability.—P.Natl.Acad.Sci.USA103:5869-5874. Boyles,J.G.etal.2013.Aglobalheterothermiccontinuuminmammals.—GlobalEcol.Biogeogr.22:10291039. Bromham,L.etal.2015.Exploringtherelationshipsbetweenmutationrates,lifehistory,genomesize, environment,andspeciesrichnessinfloweringplants.—Am.Nat.185:507-524. Bromham,L.etal.1996.DeterminantsofratevariationinmammalianDNAsequenceevolution.—Journalof MolecularEvolution43:610-621. Brown,J.H.etal.2004.Towardametabolictheoryofecology.—Ecology85:1771-1789. 14 Cipolla,A.etal.2012.Temperatureadaptationsinpsychrophilic,mesophilicandthermophilicchloridedependentalpha-amylases.—Biochimie94:1943-1950. Clarke,A.etal.2010.Scalingofbasalmetabolicratewithbodymassandtemperatureinmammals.—Journal ofAnimalEcology79:610-619. Corbett-Detig,R.B.etal.2013.Geneticincompatibilitiesarewidespreadwithinspecies.—Nature504:135137. Crespi,B.andNosil,P.2013.Conflictualspeciation:Speciesformationviagenomicconflict.—TrendsEcol. Evol.28:48-57. Crow,J.F.andKimura,M.1970.Anintroductiontopopulationgeneticstheory.—Harper&Row. Cutter,A.D.2012.Thepolymorphicpreludetobateson-dobzhansky-mullerincompatibilities.—TrendsEcol. Evol.27:209-218. Danielsson,J.etal.2015.Thermodynamicsofproteindestabilizationinlivecells.—P.Natl.Acad.Sci.USA Davies,T.J.etal.2004.Environmentalenergyandevolutionaryratesinfloweringplants.—Proceedingsof theRoyalSocietyofLondonBBiologicalSciences271:2195-2200. Dawson,K.J.1998.Evolutionarilystablemutationrates.—J.Theor.Biol.194:143-157. DePristo,M.A.etal.2005.Missensemeanderingsinsequencespace:Abiophysicalviewofproteinevolution. —Nat.Rev.Genet.6:678-87. Dias,C.L.2012.Unifyingmicroscopicmechanismforpressureandcolddenaturationsofproteins.—Phys. Rev.Lett.109: Domingo-Calap,P.etal.2010.Selectionforthermostabilitycanleadtotheemergenceofmutational robustnessinanrnavirus.—J.Evol.Biol.23:2453-2460. Dowle,E.J.etal.2013.Molecularevolutionandthelatitudinalbiodiversitygradient.—Heredity110:501-10. Drake,J.W.2009.Avoidingdangerousmissense:Thermophilesdisplayespeciallylowmutationrates.—PLoS Genet.5:e1000520. Eo,S.H.andDeWoody,J.A.2010.Evolutionaryratesofmitochondrialgenomescorrespondtodiversification ratesandtocontemporaryspeciesrichnessinbirdsandreptiles.—ProceedingsoftheRoyalSociety BiologicalSciencesSeriesB277:3587-3592. Estabrook,G.F.etal.2007.BodymassandtemperatureinfluenceratesofmitochondrialDNAevolutionin northamericancyprinidfish.—Evolution61:1176-1187. Evans,K.L.andGaston,K.J.2005.Cantheevolutionary-rateshypothesisexplainspecies-energy relationships?—Funct.Ecol.19:899-915. Eyre-Walker,A.andKeightley,P.D.2007.Thedistributionoffitnesseffectsofnewmutations.—Nat.Rev. Genet.8:610-618. Feller,G.2003.Molecularadaptationstocoldinpsychrophilicenzymes.—CMLSCellularandMolecularLife Sciences60:648-662. Feller,G.andGerday,C.2003.Psychrophilicenzymes:Hottopicsincoldadaptation.—Nat.Rev.Microbiol.1: 200-208. Friedman,R.etal.2004.Genome-widepatternsofnucleotidesubstitutionrevealstringentfunctional constraintsontheproteinsequencesofthermophiles.—Genetics167:1507-1512. Galtier,N.etal.2009.Mitochondrialwhims:Metabolicrate,longevityandtherateofmolecularevolution.— Biol.Lett.5:413-416. Geiler-Samerotte,K.A.etal.2011.Misfoldedproteinsimposeadosage-dependentfitnesscostandtriggera cytosolicunfoldedproteinresponseinyeast.—P.Natl.Acad.Sci.USA108:680-685. Gillman,L.N.etal.2010.FasterevolutionofhighlyconservedDNAintropicalplants.—J.Evol.Biol.23:13271330. Gillman,L.N.etal.2009.Latitude,elevationandthetempoofmolecularevolutioninmammals.—P.R.Soc.B. 276:3353-3359. Gillman,L.N.etal.2012.Thetempoofgeneticevolutioninbirds:Bodymassandclimateeffects.—J. Biogeogr.39:1567-1572. Gillman,L.N.andWright,S.D.2014.Speciesrichnessandevolutionaryspeed:Theinfluenceoftemperature, waterandarea.—J.Biogeogr.41:39-51. Gillooly,J.F.etal.2005.TherateofDNAevolution:Effectsofbodysizeandtemperatureonthemolecular clock.—P.Natl.Acad.Sci.USA102:140-145. Gillooly,J.F.etal.2007.Effectsofmetabolicrateonproteinevolution.—Biol.Lett.3:655-659. 15 Glazier,D.S.2014.Ismetabolicrateauniversal'pacemaker'forbiologicalprocesses?—Biol.Rev.Camb. Philos.Soc.doi:10.1111/brv.12115: Godoy-Ruiz,R.etal.2006.Naturalselectionforkineticstabilityisalikelyoriginofcorrelationsbetween mutationaleffectsonproteinenergeticsandfrequenciesofaminoacidoccurrencesinsequence alignments.—J.Mol.Biol.362:966-978. Godoy-Ruiz,R.etal.2004.Relationbetweenproteinstability,evolutionandstructure,asprobedbycarboxylic acidmutations.—J.Mol.Biol.336:313-318. Goldie,X.etal.2011.Diversificationandtherateofmolecularevolution:Noevidenceofalinkinmammals.— BMCEvol.Biol.11:286. Hartl,D.L.andClark,A.G.1997.Principlesofpopulationgenetics.—SinauerAssociates,Inc. Hillebrand,H.2004a.Onthegeneralityofthelatitudinaldiversitygradient.—Am.Nat.163:192-211. Hillebrand,H.2004b.Strength,slopeandvariabilityofmarinelatitudinalgradients.—Mar.Ecol.Prog.Ser. 273:251-267. Hoffmann,S.etal.2004.Reactiveoxygenspeciesderivedfromthemitochondrialrespiratorychainarenot responsibleforthebasallevelsofoxidativebasemodificationsobservedinnuclearDNAof mammaliancells.—FreeRadicalBiologyandMedicine36:765-773. Hormoz,S.2013.Aminoacidcompositionofproteinsreducesdeleteriousimpactofmutations.—Sci.Rep.3: 2919. Hunt,G.etal.2005.Species–energyrelationshipinthedeepsea:Atestusingthequaternaryfossilrecord.— Ecol.Lett.8:739-747. Jetz,W.andFine,P.V.A.2012.Globalgradientsinvertebratediversitypredictedbyhistoricalareaproductivitydynamicsandcontemporaryenvironment.—PLoSBiol10:e1001292. Joyner-Matos,J.etal.2011.Noevidenceofelevatedgermlinemutationaccumulationunderoxidativestressin caenorhabditiselegans.—Genetics189:1439-1447. Kumar,S.etal.2002.Maximalstabilitiesofreversibletwo-stateproteins.—Biochemistry41:5359-5374. Lanfear,R.etal.2013.Tallerplantshavelowerratesofmolecularevolution.—Nat.Commun.4:1879. Lanfear,R.etal.2010.Mutationrateislinkedtodiversificationinbirds.—P.Natl.Acad.Sci.USA107:2042320428. Lanfear,R.etal.2014.Populationsizeandtherateofevolution.—TrendsEcol.Evol.29:33-41. Lanfear,R.etal.2007.Metabolicratedoesnotcalibratethemolecularclock.—P.Natl.Acad.Sci.USA104: 15388-15393. Lourenco,J.M.etal.2013.Thedeterminantsofthemolecularsubstitutionprocessinturtles.—J.Evol.Biol. 26:38-50. Mannion,P.D.etal.2014.Thelatitudinalbiodiversitygradientthroughdeeptime.—TrendsEcol.Evol.29: 42-50. Martin,A.P.andPalumbi,S.R.1993.Bodysize,metabolic-rate,generationtime,andthemolecularclock.—P. Natl.Acad.Sci.USA90:4087-4091. McCallum,A.W.etal.2015.Productivityenhancesbenthicspeciesrichnessalonganoligotrophicindianocean continentalmargin.—GlobalEcol.Biogeogr.24:462-471. McCoy,M.W.andGillooly,J.F.2008.Predictingnaturalmortalityratesofplantsandanimals.—Ecol.Lett.11: 710-716. Mittelbach,G.G.etal.2007.Evolutionandthelatitudinaldiversitygradient:Speciation,extinctionand biogeography.—Ecol.Lett.10:315-331. Mooers,A.Ø.andHarvey,P.H.1994.Metabolicrate,generationtime,andtherateofmolecularevolutionin birds.—Molecularphylogeneticsandevolution3:344-350. Nabholz,B.etal.2008.Strongvariationsofmitochondrialmutationrateacrossmammals—thelongevity hypothesis.—Mol.Biol.Evol.25:120-130. Prager,E.M.etal.1974.Slowevolutionoftransferrinandalbumininbirdsaccordingtomicro-complement fixationanalysis.—Journalofmolecularevolution3:243-262. Presgraves,D.C.2010a.Darwinandtheoriginofinterspecificgeneticincompatibilities.—Am.Nat.176:S45S60. Presgraves,D.C.2010b.Themolecularevolutionarybasisofspeciesformation.—Nat.Rev.Genet.11:175180. Price,C.A.etal.2012.Testingthemetabolictheoryofecology.—Ecol.Lett.15:1465-74. Privalov,P.L.1990.Colddenaturationofproteins.—Crit.Rev.Biochem.Mol.25:281-305. 16 Privalov,P.L.1997.Thermodynamicsofproteinfolding.—J.Chem.Thermodyn.29:447–474. Qian,W.etal.2012.Balancedcodonusageoptimizeseukaryotictranslationalefficiency.—PLoSGenet.8: e1002603. Rohde,K.1992.Latitudinalgradientsinspeciesdiversity:Thesearchfortheprimarycause.—Oikos514-527. Rombouts,I.etal.2009.Globallatitudinalvariationsinmarinecopepoddiversityandenvironmentalfactors. —P.R.Soc.B.276:3053-3062. Rombouts,I.etal.2010.Amultivariateapproachtolarge-scalevariationinmarineplanktoniccopepod diversityanditsenvironmentalcorrelates.—Limnol.Oceanogr.55:2219-2229. Roy,K.etal.1998.Marinelatitudinaldiversitygradients:Testsofcausalhypotheses.—P.Natl.Acad.Sci.USA 95:3699-3702. Rutherford,S.etal.1999.Environmentalcontrolsonthegeographicdistributionofzooplanktondiversity.— Nature400:749-753. Sanchez-Ruiz,J.M.2010.Proteinkineticstability.—Biophys.Chem.148:1-15. Shabalina,S.A.etal.2013.Soundsofsilence:Synonymousnucleotidesasakeytobiologicalregulationand complexity.—NucleicAcidsRes.41:2073-2094. Siddiqui,K.S.andCavicchioli,R.2006.Cold-adaptedenzymes.—Annu.Rev.Biochem.75:403-433. Sniegowski,P.D.etal.2000.Theevolutionofmutationrates:Separatingcausesfromconsequences.— Bioessays22:1057-1066. Somero,G.N.1995.Proteinsandtemperature.—Annu.Rev.Physiol.57:43-68. Stanley,S.E.andHarrison,R.G.1999.Cytochromebevolutioninbirdsandmammals:Anevaluationofthe avianconstrainthypothesis.—Mol.Biol.Evol.16:1575-1585. Stegen,J.C.etal.2009.Advancingthemetabolictheoryofbiodiversity.—Ecol.Lett.12:1001-15. Stegen,J.C.etal.2012.Evolvingecologicalnetworksandtheemergenceofbiodiversitypatternsacross temperaturegradients.—ProceedingsoftheRoyalSocietyBiologicalSciencesSeriesB279:10511060. Stergachis,A.B.etal.2013.Exonictranscriptionfactorbindingdirectscodonchoiceandaffectsprotein evolution.—Science342:1367-1372. Storch,D.2012.Biodiversityanditsenergeticandthermalcontrols.—In:Sibly,R.M.etal.(eds),Metabolic ecology:Ascalingapproach.JohnWiley&Sons,Ltd. Sun,Y.D.etal.2012.Lethallyhottemperaturesduringtheearlytriassicgreenhouse.—Science338:366-370. Sunday,J.M.etal.2014.Thermal-safetymarginsandthenecessityofthermoregulatorybehavioracross latitudeandelevation.—P.Natl.Acad.Sci.USA111:5610-5615. Thomas,J.A.etal.2010.Agenerationtimeeffectontherateofmolecularevolutionininvertebrates.—Mol. Biol.Evol.27:1173-1180. Tittensor,D.P.etal.2010.Globalpatternsandpredictorsofmarinebiodiversityacrosstaxa.—Nature466: 1098-U107. Tokuriki,N.andTawfik,D.S.2009.Stabilityeffectsofmutationsandproteinevolvability.—Curr.Opin.Struc. Biol.19:596-604. Welch,J.J.etal.2008.Correlatesofsubstitutionratevariationinmammalianprotein-codingsequences.— BMCEvol.Biol.8:53. Williams,C.T.etal.2011.Dataloggingofbodytemperaturesprovidespreciseinformationonphenologyof reproductiveeventsinafree-livingarctichibernator.—JournalofComparativePhysiologyB BiochemicalSystemicandEnvironmentalPhysiology181:1101-9. Willig,M.R.etal.2003.Latitudinalgradientsofbiodiversity:Pattern,process,scale,andsynthesis.—Annu. Rev.Ecol.Evol.S.34:273-309. Wong,A.2014.Covariancebetweentestessizeandsubstitutionratesinprimates.—Mol.Biol.Evol.31:14321436. Wright,S.etal.2006.Theroadfromsantarosalia:Afastertempoofevolutionintropicalclimates.—P.Natl. Acad.Sci.USA103:7718-7722. Wright,S.etal.2011.Thermalenergyandtherateofgeneticevolutioninmarinefishes.—Evol.Ecol.25:525530. Wright,S.D.etal.2010.Energyandthetempoofevolutioninamphibians.—GlobalEcol.Biogeogr.19:733740. Yasuhara,M.etal.2012.Latitudinalspeciesdiversitygradientofmarinezooplanktonforthelastthreemillion years.—Ecol.Lett.15:1174-1179. 17 Acknowledgements–WethankAdamAlgar,FolmerBokma,RichardField,andJean-MichelRobergefor contributingtotheworkshoponenergyandbiodiversityinKotiahomansionin2011.Fundinghasbeen providedbyAcademyofFinland(forMPandME)andbyKoneFoundation(forMP,MEandJSK).Wethankthe threeanonymousrefereesforconstructivecommentsonearlierversionofthemanuscript. 18
© Copyright 2026 Paperzz