The University of Maine DigitalCommons@UMaine Earth Science Faculty Scholarship Earth Sciences 6-1-1992 Thermal and Barometric Constraints on the Intrusive and Unroofing History of the Black Mountains: Implications for Timing, Initial Dip, and Kinematics of Detachment Faulting in the Death-Valley Region, California Daniel K. Holm J. Kent Snow Daniel R. Lux University of Maine - Main, [email protected] Follow this and additional works at: http://digitalcommons.library.umaine.edu/ers_facpub Part of the Earth Sciences Commons Repository Citation Holm, Daniel K.; Snow, J. Kent; and Lux, Daniel R., "Thermal and Barometric Constraints on the Intrusive and Unroofing History of the Black Mountains: Implications for Timing, Initial Dip, and Kinematics of Detachment Faulting in the Death-Valley Region, California" (1992). Earth Science Faculty Scholarship. Paper 107. http://digitalcommons.library.umaine.edu/ers_facpub/107 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Earth Science Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. TECTONICS,VOL. 11, NO. 3, PAGES507-522,JUNE 1992 THERMAL AND BAROMETRIC CONSTRAINTS ON THE INTRUSIVE AND UNROOFING HISTORY OF THE BLACK MOUNTAINS: IMPLICATIONS FOR centralArizonaandsoutheastern California. Beginningwith an TIMING, footwallflexuresoccurbelowa scoop-shaped hangingwall block.Oneconsequence of thismodelis thatgentlydipping ductilefabricsdeveloped in themiddlecruststeepen in the uppercrustduringunloading. Thisprocess resolves thelow initialdipsobtainedherewithmappingwhichsuggests transport of theupperplateonmoderately tosteeply dipping INITIAL KINEMATICS FAULTING REGION, DIP, AND OF DETACHMENT IN THE DEATH VALLEY CALIFORNIA DanielK. Holml andJ. KentSnow 2 Department of EarthandPlanetary Sciences, Harvard initiallylistticgeometry, a patternof footwallunroofing accompanied bydikeintrusion progresses northwestward. This patternmaybeexplained by a modelwheremigration of surfacesin themiddleanduppercrust. University,Cambridge,Massachusetts INTRODUCTION Daniel R. Lux Department of Geology,Universityof Maine,Orono Determining thetiming,pattern,andamountof unroofing duringorogeny isfundamental tounderstanding processes of lithospheric deformation. In theBasinandRangeprovince, geologic studies usingfluidinclusions [ParryandBruhn,1987] Abstract.Unroofingof theBlackMountains, DeathValley, California,hasresultedin theexposureof 1.7 Ga crystalline basement, latePrecambrian amphibolitefaciesmetasedimentary andbalancedandreconstructed crosssections [Bartleyand Wernicke,1984;WernickeandAxen, 1988]indicate10-15 km, rocks, andaTertiary magmatic complex. The40Ar/39Ar cooling ages,obtained fromsamples collected across theentire lengthof therange(>55km),combined withgeobarometric resultsfromsynextensional intrusions, providetime-depth constraints on the Mioceneintrusivehistoryandextensional unroofingof theBlackMountains.Datafromthesoutheastern BlackMountainsandadjacent Greenwater Rangesuggest unroofing fromshallowdepthsbetween9 and10Ma. To the northwest in thecrystalline coreof therange,biotiteplateau agesfrom~ 13 to 6.8 Ma fromrocksmakinguptheDeath Valleyturtlebacks indicatea midcrustal residence (with temperatures >300øC)priorto extensional unroofing.Biotite andperhaps upto20 km,of footwallunroofing forsome mountain ranges.As thesedepths generally correspond to temperatures between 200øC and500øC, 40Ar/39Ar thermochronologic analyses of minerals withclosure temperatures in thisrangeprovide a testof theamount and timingof unroofing duringCenozoic extension [Foster etal., 1990;Richardet al., 1990]. With a regionaldistribution of ages, thermochronology canalso beused todetenfiine theareal pattern of cooling, andthusprovide a powerful testof structural models of extension. The BlackMountainsof DeathValley,California(Figure1) plutons reveala diachronous coolingpatternof decreasing ages towardthenorthwest,subparallel to theregionalextension direction.Diachronous coolingwasaccompanied by dike arecentrally located in theDeathValleyextended terrain between theSpringMountains totheeastandtheSierraNevada tothewest.Isotopic, field,andpetrologic studies [Asmerom et al., 1990;HolmandWernicke,1990]showtheBlack Mountains toconsist predominantly of a Miocenemidcrustal magmatic system (intermediate-mafic tosilicic)intruded into intrusionwhichalsodecreases in agetowardthenorthwest. Proterozoicbasementandlesseramountsof miogeoclinal strata Thecoolingagepatternandgeobarometric constraints in crystalline rocksof theBlackMountains suggest denudation of 10-15 km alonga northwest directeddetachment system, consistent with regionalreconstructions of Tertiaryextension andwithunroofingof a northwest deepening crustalsection. Mica coolingagesthatdeviatefromthenorthwest younging metamorphosed toamphibolite facies[Otton,1977].Although 40Ar/39Ar thermochronologic studies insome surrounding ranges haveproventobeproblematical [e.g.,DeWittetal., 40Ar/39Ar ages fromboth Precambrian basement andTertiary trendareconsistent with northwestward transport of rocks initiallyat shallowercrustallevelsontodeeperlevelsalong 1988],preliminary results fromtheBlackMountains metamorphic core complex yielded well-behaved 40Ar/39Ar systematics in bothProterozoic basement rocksandTertiary plutons[Holmet al., 1989;Asmerom et al., 1990;McKenna, 1990]. ThustheBlackMountainsprovidean excellent splaysof thedetachment. Thewell-known Amargosa chaos andperhaps theBadwater turtleback areexamples of this opportunity tostudythethermal history of a rangeblock "splaying"process. cooling agedataandbarometry onsynextensional intrusions andcrystalline basement rocksfrom18localities distributed throughout theBlackMountains. Thesethermochronologic Considering thecurrentdistance of thestmcturally deepest samples awayfrommoderately to steeplyeasttiltedTertiary stratain the southeastern Black Mountains,thesedataindicate anaverage initialdipof thedetachment system of theorderof 20ø, similarto thatdeterminedfor detachment faultsin west 1NowatDepartment of Geology, KentState University, Kent, Ohio. 2 NowatDivisionof Geology andPlanetary Sciences, CaliforniaInstituteof Technology,Pasadena,California. Copyright1992 by the AmericanGeophysical Union, unroofed during Tertiary extension. Wepresent 40Ar/39Ar andbarometric resultsplaceimportant constraints onthetime, amount,andstyleof intrusionandunroofingof footwallrocks exposed by crustalextension in theDeathValleyregion. GEOLOGIC FRAMEWORK Crustalextension in theDeathValleyregionhasoccurred principallybetween15Ma andthepresent.Reconstruction of Neogeneextension in theregionbetweenthestableSpring Mountainsblockandthe SierraNevadarestores rangeblocks Papernumber92TC00211 0278-7407/92/92TC-0021510.00 now scattered over an area 150 km wide into an area less than 10 km wide [Wernickeet al., 1988; SnowandWernicke, 508 Holmet al.: Unroofingof theBlackMountains, DeathValley ion• direction ß ßFIGURE , 2 ........ ß ,,.,.,,. ß , Quaternary .,, .,.. '.i[--•']Pre-Quaternary Fig. 1. Index map of the DeathValley regiondepictingranges andmajor faults.AbbreviationsareNFZ, NorthemDeath Valley-FumaceCreekFault zone;SDF, SouthemDeathValley fault;SI-IF,Sheephead fault;GF, Garlockfault. 1989]. Accordingto thesestudies, regionalwestwardmigration of extensionalongdown-to-the-west detachment faultsresulted in the sequentialdetachmentof crustal-scale sliversfroma westwardmigratinghangingwall block[e.g.,Asmeromet al., 1990]. Otherstudiesin theregion,however,advocatemuch lessextensionandfavortheevolutionof rangeblockssemiindependently of eachother,eachwithseparate deformational and thermalhistories[e.g.,Wright, 1989]. The BlackMountainslie on theeastflankof DeathValley, Califomia(Figure 1). Unroofingof footwallrockson the westemportionof therangehasresultedin theexposure of a seriesof northwestplungingtopographic andstructural domes knownas theDeathValley "turtlebacks" (Figure2) [Curry, 1938;Wrightet al., 1974a]. Thesefeaturesarecomposed predominantlyof 1.7 Ga gneissicandschistose basement anda carapace of deformedandmetamorphosed Eocambrian carbonate. In thecoreof theBlackMountainsandlargelysurrounding the turtlebacks to theeastis a batholithof gabbroicanddioritic composition.A recentisotopicstudyindicatesthatthis intrusion(theWillow SpringPluton)is mid-Miocenein age (11.6 + 0.2 Ma [Asmeromet al., 1990])andthuswasemplaced duringlarge-scaleextensional tectonism in theregion[Cemen et al., 1985]. Intrudedinto theplutonandPrecambrian basementrocksis a siliciccomplexof graniticto monzonitic composition. The BlackMountainscoredescribed aboveis stmcturally overlainalongnormalfaultsby theAmargosachaos[Noble, 1941;WrightandTroxel, 1984],a highlyextended massof unmetamorphosed miogeoclinal swamof Eocambrian and CambrianageandTertiaryvolcanicandsedimentary rocks (Figure2). The crystallineterrainwasunroofedalongthese faultsin late Mioceneandyoungertime akinto other metamorphic corecomplexesin theCordilleranorogen.Holm andWemicke[1990]proposed thatrocksof theAmargosa chaos have been translated 15-20 km northwestward from an originalpositionin the southeastem BlackMountains(Figure 2). Accordingly,thechaoswouldrepresent a stranded portion of thehangingwall of an initiallywesterlydippingdetachment faultalongwhichtheBlackMountainsweredenuded duringlate Miocenetime. The predominantly shalloweastwarddip of the faultcurrentlyexposedin theeasternBlackMountainswould reflecteastwardtilting of the rangeasthe footwallwas progressivelydenudedto the west. On thebasisof the current configurationof thecrustalsectionandon geobarometry of the Willow SpringPluton,Holm andWemicke[1990]suggested a paleodepth rangeof 10-30 km for thewestemportionof the Black Mountainsprior to extension.This tectonicscenariofor formationof the Black Mountainsis consistent with previous reconstructions in the DeathValley regionwhichsuggest transportof the PanamintMountainson the westemsideof DeathValley (Figure1) off the topof theBlackMountains duringTertiaryextension[Stewart,1983;SnowandWemicke, 1989]. In contrastto this scenario,Wright et al. [1987] interpretthe Amargosachaosasoverlyinga northwesterly movinglower platewith bothtop-to-the-east denudation of the eastemBlack Mountainsandtop-to-the-west denudation of the western Black Mountains. ANALYTICAL METHODS In orderto revealthecoolingagepatternacross theBlack Mountains, samples werecollected fromwidelyspaced localitiesthroughout therangein bothTertiaryplutonicrocks and Precambrian basement. Because of the extensive synextensionalintrusionslocatedin the centralBlack Mountains, moresamples fromdifferentrocktypeswere collected therein ordertodifferentiate between cooling ages relatedto tectonic unroofing, topostmagmatic cooling, orto thermalresetting.Eighteen localities weresampled across an approximately 55 km northwest trending traverse alongthe lengthof themountain range.Fromthesesamples, 30 age determinations weremadeonfivedifferent mineralsystems and onewholerockseparate (Table 1). Mineralswereseparated usingstandard magnetic andheavy liquidseparation techniques andhandpicking.Sample preparation, irradiation, andanalytical procedures for40Ar/39Ar incremental release datingweredescribed byLux [1986]. Samples wereirradiated in theUniversity ofMichigan reactor. Variationsir•neutronflux duringirradiation weremonitored witha biotitemineralstandard (University of Mainelaboratory standard, 247.6Ma). Plateauageswerecalculated from consecutive gasincrements thattogetherconstitute >60% of thetotalgasreleased.Uncertainties arereported at the20 level andincludetheuncertainty in thefluxmeasurement (Jvalue). Analytical results foreach sample aregiven intheAppendixl. Unalteredsamplesof the SmithMountainGranitewere studied petrographically toselectthosewiththerequired phase assemblage for Al-in-homblende geobarometry. ThetotalA1 1Appendix isavailable withentire manuscript on microfiche.OrderfromAmerican Geophysical Union,N.W., Washington, D.C. 20009. Document T92-002;$2.50.Payment must accompanyorder. 116ø47' $60•8 ' Badwater turtleback A Copper Canyon turtleback Mormon Point turtleback Figure 3 Ashford Canyon Region L•,••.. ....•. of Amargosa Chaos Unmetamorphosed Late Precambrian to Tertiary sedimentary and volcanic hangingwall rocks, Intact but steeply east-tilted in southern Black Mountains ';'•'-,:-•• Granitic intrusive rocks /..'??..'..'.. ..... :?..'?.• •'7 '•:i:'.:,::....•, i'"'"'"'"'"'"""'"'"':"'"'"'"'""'"'"::• :::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::: Willow Spring Diorite •.:,::,:.?:::.:.:::.• ß :......::...:,.,:.,.:......:...:..., •..:.:./ '::"'::' :"'•"':i!'"// [•'? 1,7 Ga crystalline rocks including amphibolite _ • • • Black Mountains facies Late Precambrian carbonate rocks surrounding the turtlebacks detachment SYMBOLS Basal unconformity, Tertiary volcanic sequence ß • • ß • fault Basal unconformity, Pahrump Group and younger units Fig.2. Geologic mapof theBlackMountains andGreenwater Rangesimplified afterStreitzandStinson [1974],Drewes[ 1963],WrightandTroxel[ 1984],Otton[1977]andHolmandWernicke[1990]. 510 Holmet al.: Unroofing of theBlackMountains, DeathValley Table1. Summary ofBlack Mountains 40Ar/39Ar Data Sample Rock Type Locality Mineral Elevation, m Age*,Ma Southeastern Black Mountains IH1-BIO pC basement 116ø25.6 ' W, 35ø52.5'N biotite RH-BIO pCbasement 116030.0 ' W, 35ø55.0' N biotite AM-UNC-M AM2a-M pC basement pC basement 116ø39.6 ' W, 35ø56.4 'N 116ø40.2 ' W, 35ø57.5' N TPG-SM granite 116o40.0 ' W, 36ø02.7' N 1,119 234.3+ 2.5 (tg) 671 232.3+ 5.9(ti) 195 317 1411.6+ 10.7(tg) 283.2+ 4.1 (ti) 988 8.7 + 0.1 (ti) AshfordCanyon muscovite muscovite Central Black Mountains Core hornblende biotite CCR-AR 8.2 + 0.1 (ti) gabbro-diorite 116o41.6 ' W, 36ø06.1 'N hornblende 1,585 TPL-BIO latite dike 116o40.5' W, 36ø03.0'N biotite 921 7.85 + 0.18 (tp) 89-CC pC basement 116ø44.1 ' W, 36ø06.6' N homblende -60 > 14.31+ 0.81 (tg) 988-25 gabbro-diorite 116ø40.4 ' W, 36ø03.1' N 975 10.16+ 0.20 (tp) 89-MP pC basement 116ø45.1 ' W, 36ø02.0' N 61 9.94+ 0.44 (tp) 988-20 gabbro-diorite 116ø40.4 ' W, 36ø03.1' N homblende 975 10.42+ 0.31(tp) biotite plagioclase 1 plagioclase 2 orthoclase biotite biotite homblende 6.63 + 0.13 (tp) biotite homblende 10.06+ 0.39(tp) 8.39 + 0.13 (tp) biotite 8.03 + 0.14 (tp) 8.36 + 0.17 (tp) 6.70 + 0.61 (tp) 5.89 + 0.51 (tp) felsicdike 116o42.3' W, 36ø07.1'N TQM-HB DH-3780 granite gabbro-diorite (deformed) gabbro-diorite (deformed) 116ø37.6 ' W, 36o08.4 'N 116o40.4 ' W, 36ø08.0' N 90-38 dioritedike 116ø45.0 ' W, 36ø16.3'N wholerock 750 6.31 + 0.21 (tp) BWT-B DH-BWT-2 pC basement pC basement 116o45.6 ' W, 36ø17.1' N 116o45.0 ' W, 36ø16.3' N biotite muscovite 265 732 13.23+ 0.23(tp) 24.00+ 0.40(ti) DH-2650 116ø41.9' W, 36ø07.5' N homblende homblende biotite homblende biotite 1,067 7.20 + 0.30 (ti) 6.90 + 0.20 (ti) CCTB-B 1,670 1,152 808 8.69+ 0.31(tp) 8.05+ 0.28(tp) 7.00 + 0.10 (ti) 8.90+ 0.60(ti) 6.66 + 0.12 (tp) Northern Black Mountains biotite 12.70 + 0.20 (ti) GreenwaterRange TQM-GW-B grilni•;e 116ø21,• ' W, 35ø•59,9' N Di0•ite 902 9.76+ 0.25(tp_) * All tp (plateau age)andti (intercept age)areconcordant withinerrorwhenbothagesexistforindividualsamples; tgrepresents totalgasage;pC is Precambrian. contentin rimsof homblende grainsin thesesamples was obtained usinga Camecathree-spectrometer CAMEBAX electronmicroprobe at HarvardUniversity. THERMOCHRONOLOGY RESULTS PreviousK-At isotopicstudiesof theBlackMountains concentrated on volcanic rocks which flank the eastem and northernsidesof thecrystallineterrane[Fleck,1970]. However,Armstrong [ 1970]reported K-Ar agesfromTertiary intrusiverocksof 7.5 _+0.3 Ma (biotitein diorite)and6.3 + 0.4 Ma (graniteporphyrywholerock). Theresultsof this studyarediscussed belowwithrespectto theregional distribution of samplelocalitiessummarized in Table1. Plate 1 is a summary diagramof thethermochronologic data presented in thispaper.Theagesareplottedona mapof the BlackMountainswhichis thesameasFigure2 butwithout thegeologicalpatterns.No diffusionexperiments to determine mineralclosure temperatures werecarriedoutin thisstudy,and standard closuretemperatures of 500ø+ 25øC(hornblende), 350ø _+25øC(muscovite),and300ø+ 25øC(biotite)areassumed to interpretthedata[McDougallandHarrison,1988]. Interpretation of feldspar releasespectra andclosure temperature are discussed in the text. Southeastern BlackMountains.Two ageswereobtained fromcoarsely crystalline micaschists andquartz-feldspar gneisses from Precambrianbasementin the southeastern Black Mountains.Biotiteseparates fromsamples IH1-BIO andRHBIO yieldedsimilarreleasespectra andtotalgasagesof 234.3+ 2.5 Ma and230.8+ 6.1 Ma respectively. Neithersample yieldeda plateauage,butbothshowa monotonicincrease in age(from-210 to 250 Ma) in progressively highertemperature Holmet al.: Unroofingof theBlackMountains, DeathValley increments.SampleRH-BIO yieldedanisotopecorrelation intercept ageof 232.3+ 5.9Mawitha40Ar/36Ar initialratio of 304.5 + 38.9. The similar,althoughsomewhat disturbed, releasespectraandtotalgasagesof thesesamples, aswell as theconcordant interceptagefor oneof thesamples, leadusto concludethatthisregionof the BlackMountainshasremained below 300øC since 230-235 Ma. AshfordCanyon. Two Precambrian basement sampleswere collectedfrom thevicinityof AshfordCanyonwherelate Precambrian PahrumpGroupstratarestdepositionally on basement(Figure2). SampleAM-UNC-M is located~30 m belowthenonconformity (Figure3). A muscoviteseparate from AM-UNC-M yieldeda totalgasageof 1411.6+ 10.7 Ma and a releasespectrain whichfive increments(with over 65% of thetotalgas)giveagesbetween1360and 1400Ma. We interpretthisspectrumto indicatecoolingbelow350øCat about1380+ 20 Ma. A muscoviteseparate from sample AM2a-M (Figure3) yieldeda saddie-shaped spectrum withan ageminimumof 279.3+ 1.9 Ma. Saddle-shaped spectraarea typicalsignof excessargon[McDougallandHarrison,1988], andthe40Ar/36Ar initialratioof718.3+ 47.2forthissample confirmsthis. However,an interceptageof 283.2+ 4.1 Ma indicatesthatthe ageminimumfor thisspectrum maybe a meaningful cooling age.In addition, when a 40Ar/36Ar initial ratioof 718.3 is assumed, thereleasespectrum givesa totalgas ageof 284 Ma withover90% of thegas(eightincrements) fallingbetween280 and300 Ma. 0 1.0 I km 511 CentralBlackMountainscore. Elevensampleswere collectedfrom thecentralBlackMountainscrystallinecore (Table 1), the regionoccupiedby the southerntwo turtlebacks (MormonPointandCopperCanyon)andthe adjacentMiocene intrusions(Figure2). Two samples(988-20 and988-25) of undeformed11.6 Ma Willow SpringPlutoncollectedfromthe sameoutcropnearWillow Springin Gold Valley (Figure2) givehornblende plateauagesof 10.42+ 0.31 Ma and 10.16+ 0.20 Ma andconcordant interceptagesof 10.3+ 0.2 Ma and 10.2+ 0.5 Ma. A hornblendeseparatefromanother undeformedsample(CCR-AR, collected-6.4 km northof this locality)givesa plateauageof 10.06+ 0.39 Ma anda concordant interceptageof 9.8 _+0.2 Ma. Biotiteseparates from samples988-20 and988-25 giveconcordant totalgas, intercept,andplateauagesof 8.36 + 0.17 Ma and8.39 + 0.13 Ma respectively.We interprettheseagesasindicating postcrystallization coolingbelow500øCat 10.25_+0.15 Ma and below 300øC at 8.40 _+0.15 Ma. Releasespectrawerealsoobtainedfromplagioclase and orthoclase separates from sample988-20. The Willow Spring Plutoncontainsonly minor amountsof orthoclaseand separation from plagioclasewasfraughtwith difficultyowing to thepresence of hydratedplagioclase grains.A separate consisting of ~50% orthoclase and~50% plagioclase did not givea plateaubut yieldedan interceptageof 7.2 + 0.3 Ma in agreementwith its total gasage. While cautionmustbe used in interpretingsuchdata,it is worth notingthat McKenna [ 1990] obtainedan interceptageof 7.03 _+0.04 Ma for an orthoclase separate froma nearbygranitewhichintrudesthe Willow SpringPluton. Thus we tentativelyinterpretthesedata to indicatecoolingbelow200ø-250øC(commonlydetermined closuretemperature rangefromdiffusionstudies onK-feldspars [e.g.,HubbardandHarrison,1989]) at 7.0-7.5 Ma. Two splitsof plagioclasefrom sample988-20 yielded saddie-shaped spectra.The first splitgivesa plateauageof 5.89 + 0.51 Ma for nineincrements consisting of 76% of the gasanda concordant interceptageof 5.9 + 0.4 Ma. The second split givesa plateauage of 6.70 + 0.61 Ma for eight increments consisting of 70% of thegasandan interceptageof 6.4 + 0.3 Ma. The disparateagesfor two splitsof the same separate aswell asthesaddle-shaped spectraleadto difficulties in interpretingthesedata. In addition,thelowerdiscordant age from theorthoclase separate(in spiteof a similaror possibly evenhigherclosuretemperature basedonempiricalevidence [McDougallandHarrison,1988])indicateto usno appropriate meaningfulinterpretation. Intrudedinto the Willow SpringPlutonin the southern GoldValley area(andunderlyingmuchof SmithMountain, Figure2) is a coarsegrainedgranitewhichcommonlyexhibits Rapakivitextureandlocallycontains abundant coarse hornblende grains.A hornblende separate (TPG-SM)givesan interceptageof 8.7 + 0.1 Ma anda nearplateaufor thelast 10 increments (78% of thegas)of 8.5 + 0.4 Ma with theoldest increment being8.72+ 0.15 Ma. Biotitefromthissample givesan intercept ageof 8.1 + 0.1 Ma anda plateauageof +Ashford-'-"• ': 8.00+ 0.21Ma indicating thatthegranitecooledquiterapidly. Because theadjacentWillow SpringPlutonintowhichthis graniteintrudedcooledbelow 500øCat 10.1-10.4 Ma, we Fig. 3. Geologicmapof AshfordCanyonregionshowing samplelocalities(simplifiedafterWrightandTroxel[1984]). PatternedafterFigure2. interpretthe8.7 Ma hornblende ageasrepresenting the approximate timeof crystallization of theintrusion. A hornblende separate (TQM-HB) froma coarse-grained silicicplutonontheeastsideof theBlackMountains yieldeda slightlysaddle-shaped spectrum witha plateauageof 10.11+ 512 Holm et al.: Unroofingof the BlackMountains,DeathValley 0.73 Ma. However,the isotopecorrelationdiagram,when regressed throughtheplateaupoints,givesan interceptageof 8.7Ma andaninitial40Ar/36Arratioof 312.02+ 5.12 indicatingthepresenceof excessargon. Whenan initial 40Ar/36Ar ratioof 312isassumed fortheincremental release spectrum, thesaddleshapedisappears andtheplateauage becomes8.69 + 0.31 Ma, concordant with theinterceptage. This pluton,like the SmithMountainGranite,intrudedinto theWillow SpringPluton,andits hornblende ageis similarto the hornblendeageof the SmithMountainGranite. We interpretthisageasrepresenting thetimeof crystallization of severalsilicicplutonsin the Black Mountains. Late-stagelatiteandrhyolitedikeswithbiotiteandfeldspar phenocrysts intrudeboththe Willow SpringPlutonandthe SmithMountainGranitein the vicinityof Gold Valley. These dikesexhibitan intensemyloniticfoliationwhichcommonly doesnot extendinto undeformedcountryrock(Figure4a). A coarsebiotiteseparatefroma dikesample(TPL-BIO) that intrudestheWillow SpringPlutoncollectednearWillow Spring(Table 1) yieldeda plateauageof 7.85 + 0.18 Ma anda concordantinterceptageof 7.9 + 0.1 Ma. Theseagesare only slightlyyoungerthanthe biotiteagesof the SmithMountain Granite,theupperboundevenoverlapping in errorwith the plateauagealthoughnot with theinterceptage. We interpret the dike age as the time of intrusionandcrystallizationinto countryrock with ambienttemperatures between200øCand 300øCasindicatedby theK-feldsparandbiotiteagesobtained from the surrounding Willow SpringPluton. Precambrian basement samples werecollectedfromthe MormonPoint(sample89-MP) andCopperCanyon turtlebacks(sample89-CC; Figure2). Theserockscontaina coarselyrecrystallized metamorphic fabric. Basement fromthe MormonPointturtleback(sample89-MP) givesa hornblende plateauageof 9.94 + 0.44 Ma with a concordant interceptage of 9.9 + 0.2 Ma similarto the hornblendeagesin theWillow SpringPluton. A concordant plateauandinterceptbiotiteage from this sampleindicatessimplecoolingbelow300øCat 8.03 + 0.14 Ma. Sample89-CC showsa complicatedhornblende spectrumwith no interceptregression.The spectrum, however, appearsverysimilarto partiallyresetspectrafromotherstudies wheretheminimumagecorresponds to a knownlaterheating episode[HarrisonandMcDougall,1980]. The minimumage for thisspectrum(11.86 + 1.57Ma) corresponds with theage of intrusionof the Willow SpringPluton,andthereforewe interpretthisspectrumto representcoolingbelow500øCby at least14 Ma with partialresettingat 11.6Ma dueto reheating by the gabbro-diorite batholith. Biotitefromthissampleyields a concordant interceptandplateauageindicatingsimplecooling below 300øCat 6.63 + 0.13 Ma. The CopperCanyon turtlebackdatasuggestthatthebasementrocksin thisregion Fig. 4. (a) Photomicrograph of mylonitictexturecommonin porphyriticdikesin thecentralBlackMountains(sampleTPLBIO). Lengthis 2.0 mm across.(b) Photomicrograph of late leucocratic phaseof theWillow SpringPluton(sample88-23) showingquartzin contactwith hornblende (curvedarrows). Straightarrowspointto examples of K-feldspargrainsandKfeldsparinclusionsin plagioclase.Lengthis 0.5 mm across. (c) Photomicrograph of euhedralhornblende crystalfromthe SmithMountainGranite(sampleTPG-SM) in quartzplagioclase-potassium feldspar-biotite rich matrix. Lengthis 0.5 mm across. werebelow 500øCprior to intrusionof theWillow Spring Pluton. We interpretthe MormonPointhornblende ageas havingbeencompletelythermallyresetby thebatholithat 11.6 Ma, followedby slowcoolingto below500øCat 10 Ma (note the similarhornblendeagesfrom the Willow SpringPluton). Holmet al.: Unroofingof theBlackMountains, DeathValley A ductilelydeformedsampleof theWillow SpringPluton (sampleDH-2650) obtainedbeneaththefoliatedEocambrian carapace onthenortheast sideof theCopperCanyonturtleback (Figure2) givesa hornblende plateauageof 8.77+ 0.70 Ma with a concordant interceptageof 8.9 + 0.6 Ma. Biotitefrom thissampleyieldeda plateauageof 6.66 + 0.12 Ma andan interceptageof 6.8 + 0.1 Ma. Anotherdeformedgabbro-diorite sample(DH-3780) froma ductileshearzone~3 km northwest of sampleDH-2650 givesa hornblende plateauageof 8.05+ 0.28 Ma andan interceptageof 8.3 + 0.5 Ma. Biotitefrom thissampledoesnotyielda plateauagebutdoesgivean interceptageof 7.0 + 0.1 Ma. Thehomblende agesfromthese samplesaresubstantially youngerthanthehornblende ages derivedfromundeformed samples.Thebatholithintruded at 11.6 Ma into countryrockwith ambienttemperatures below 500øC and cooled below 500øC at 10.1-10.4 Ma. Therefore we interprettheseyoungerhornblende agesassociated with ductilelydeformedsamples asindicating resetting during mylonitization with ambienttemperatures between300øCand 500øC. Davidsonand Snee [ 1990] have demonstrated that under greenschist faciesconditions (>300øC)hornblende canbereset duringductilesheafingat ambienttemperatures belowthe homblende closuretemperature. Mylonitefabricsaretypically formedat temperatures abovetheclosuretemperature for diffusionin biotite. We thereforeinterpretthe6.7 and7.0 Ma biotiteagesfromthesesamples asrepresenting simplecooling followingdeformation. The CopperCanyonturtleback is intruded by felsicdikes whichareorientedperpendicular to theaxisof theturtleback 513 basementrockscooledslowlythroughthe 350øCisothermat ~24 Ma with furthercoolingthrough300øCat ~13 Ma. Fine-graineddioriticdikescut thebasementfoliationat a highangleandare synkinematic with late-stage brittlefaulting [Miller, 1991]. A wholerock analysisof oneof thesedikes (sample90-38) givesa plateauageandconcordant interceptage that indicatescrystallizationat 6.3 + 0.2 Ma. Thesedata suggest thatthebasement rocksof theBadwaterturtleback were within a few kilometersof theEarth'ssurfaceby at least6.3 Ma. GreenwaterRange. The GreenwaterRangeliesjusteastof theBlackMountains(Figures1 and2) andconsists of Tertiary silicicplutonsoverlainby 10-4 Ma vailablyfaultedmaficto silicicvolcanicrocks. In the southemGreenwaterRange,8-9 Ma Shoshone volcanicslie depositionally on feldsparporphyry granite[Figure2; L. Wright andB. Troxel,personal communication].A biotiteseparatefrom thisgranite(sample TQM-GW-B) gaveconcordant totalgas,intercept,andplateau agesof 9.76 + 0.25 Ma, consistent with rapidcoolingfrom above300øCat 9-10 Ma. This age is approximately1 m.y. olderthanthe ageinterpretedfor majorsilicicplutonismin the central Black Mountains. GEOBAROMETRY RESULTS extensivelyalteredto chlorite,andcommonlyexhibit A lowerboundon thedepthestimatefor crystallization of theWillow SpringPlutonat 9.5-12.5 km wasdetermined by Holm andWernicke[1990,Table 1] usingtheAl-in-homblende geobarometer [Hammarstrom andZen, 1986;Johnson and Rutherford,1989]andassuming anoverburden densityof 2750 deformation features such as strain shadows and kink bands. A kg/m 3. Asobserved byHolmandWemicke [1990] and biotiteseparate fromoneof thesedikeswasconsidered pure enoughfor agedatingonlyafter2 daysof hand-picking. SampleCCTB-B did notyielda plateauagebutdidgive concordant interceptandtotalgasagesof 6.9 + 0.2 Ma and6.8 + 0.2 Ma, respectively.Theseagesoverlapwith thebiotite coolingagesobtainedfrom thePrex:ambrian basement andthe Willow SpringPlutonin thisregion. The CopperCanyon turtlebackdikesarevolumetricallysmallandareconsidered unlikelyto havecompletelythermallyresetthe surrounding countryrock to above300øC. We interpretthe6.9 + 0.2 Ma interceptageas the time of intrusionof thesedikesintorapidly coolingcountryrock similarto dike intrusionin theGold Valley region~1.0 m.y. earlier. corroborated by Wrightet al. [1991]themainportionof the batholithdoesnotcontaintheappropriate assemblage required for thisgeobarometer. However,lateleucocratic portionsof whichare intrusiveinto the mainportiondo containthe requiredassemblage. We concurwithWrightet al. [1991]that theirsamples wereinappropriate for usingthisgeobarometer as theywereunableto findanypotassium feldsparandcouldnot locatequartzin contactwith hornblende.However,samples analyzedby Holm andWernicke[1990]do containpotassium feldspar(asevidenced fromoptical,microprobe, andchemical staininganalyses)aswell asquartzin contactwith hornblende (Figure4b). In addition,successful analysesandsimilarresults usingthisgeobarometer on theserockshavebeenreportedby NorthernBlack Mountains. SamplesBWT-B andDHBWT-2 aremylonitizedPriambrian basement fromthe Badwaterturtlebackin the northemBlackMountains.Sample BWT-B is locatedonlya few metersbelowthebrittle detachment surface,whereassampleDH-BWT-2 wascollex:ted from a deeplyincisedcanyonin thelowerplate(approximately 200 m below the brittle detachmentsurface). Micas from both localitiesare strainedintomica-fishprofilestypicalof mylonitictextures.Muscovitefrom sampleDH-BWT-2 showsa typicaldiffusionlossprofilewith an ageminimumof 16.03+ 1.90 Ma, four increments(representing 72% of the gas)with agesbetween23.4 and24.4 Ma, andan interceptage of 24.0 + 0.4 Ma. Biotitefrom sampleDH-BWT-2 is stronglydiscordantfrom themuscoviteagegivinga concordant interceptandplateauageof 12.63+ 0.50 Ma. Biotitefrom sampleBWT-B givesa slightlyolderplateauageof 13.23+ 0.23 Ma anda concordant interceptageof 13.4+ 0.1 Ma. We interpretthesedataasindicatingthattheBadwaterturtleback Meurer and Pavlis [ 1991]. fold [Drewes, 1963]. Biotite in thesedikes are often Dated samplesof the SmithMountainGranite(TPG-SM) alsocontainthepropermineralassemblage n•essaryfor applicationof theAl-in-homblendegeobarometer. The results of microprobe analyses of coarseeuhedralhomblendes (Figure 4c) fromthreedoublypolishedsex:tions of thegranitearegiven in Table2. Total A1 contentfrom rim analysesof homblende indicatesa pressureof 2.76 + 0.5 kbar (usingthemodified equationof JohnsonandRutherford[ 1989,p. 838]) or a depth estimateof 10.0+ 1.8km usingan averageoverburden density of2750kg/m 3. ThetotalA1content obtained hereis substantially greaterthanthatrecentlyreportedfor theSmith MountainGraniteby Wright et al. [1991]. A possible explanation for thisdiscrepancy mightbe thatdifferentphases of thegraniteweresampled.Considering thatintrusion occurredsimultaneously with unroofing,it seemsquite possiblethatvariousphasesmightrex:ord differentdepthsof emplacement. 514 Holmetal.: Unroofing oftheBlackMountains, DeathValley TABLE 2. CationProportions FromRim Analysesof Hornblendein SmithMountainGranite Cation Sample 90-SMG-4 90-SMG-1 91-SMG-3 90-SMG-3 Si A1 Fe Mg Ca Na K Ti 6.85 1.46 2.04 2.65 1.94 0.27 0.15 0.10 0.06 Mn 6.82 1.45 1.82 2.82 1.92 0.31 0.17 0.16 0.06 6.76 1.45 2.05 2.69 1.90 0.34 0.17 0.15 0.07 6.75 1.49 2.01 2.70 1.89 0.36 0.18 0.16 0.07 6.71 1.51 2.04 2.71 1.94 0.33 0.19 0.15 0.07 6.78 1.47 2.04 2.63 1.87 0.39 0.18 0.16 0.07 6.81 1.41 1.99 2.74 1.93 0.28 0.17 0.14 0.07 6.77 6.78 1.52 1.49 1.93 2.01 2.69 2.72 1.93 1.89 0.32 0.29 0.18 0.18 0.14 0.14 0.07 0.06 6.78 1.50 2.06 2.65 1.88 0.35 0.17 0.13 0.07 6.78 1.44 1.93 2.77 1.92 0.34 0.17 0.16 0.07 6.74 1.53 2.06 2.63 1.92 0.27 0.18 0.14 0.07 6.77 1.53 2.05 2.61 1.92 0.30 0.16 0.13 0.07 6.99 1.23 1.92 2.83 1.98 0.24 0.13 0.09 0.07 6.96 1.29 1.84 2.91 1.87 0.26 0.14 0.12 0.06 6.74 1.51 2.03 2.66 1.93 0.34 0.17 0.15 0.07 6.75 1.52 2.00 2.68 1.90 0.34 0.18 0.14 0.07 6.78 1.50 1.97 2.68 1.87 0.35 0.18 0.16 0.07 6.83 6.80 1.37 1.49 1.90 1.81 2.85 2.83 1.93 1.88 0.28 0.34 0.16 0.18 0.15 0.15 0.06 0.06 Proportions areper23 oxygens. DISCUSSION duringregional extensional tectonism andunroofing inthe DeathValley region[Cemenet al., 1985;HolmandDokka, Timing,Depth,andDeformationof MioceneIntrusions Intrusions in theBlackMountains areentirelyTertiaryin age,theoldestbeingtheWillow SpringPlutondatedat 11.6+ 0.2 Ma [Asmerom et al., 1990]. Previous mapping distinguished at leastthreemajorsilicicintrusive bodies younger thantheplutonbasedoncompositional differences and dikerelations[Drewes,1963;Otton,1977]. WillowSpringPluton. The minimumhornblende ageof ~14.3Ma fora themallyresetPrecambrian basement sample (89-CC) in the centralBlack Mountainsindicatesambient temperatures below500øCpriorto intrusion of Tertiary plutons.Thisestablishes anupperboundfor thedepthof intrusionof theWillow SpringPlutonat-16.7-20 km assuming typicalBasinandRangegeothermal gradients after Lachenbruch andSass[1978]of 25-30øC/km priorto intrusion.Considering elevated geothermal gradients during Miocenetimewouldmaketheupperboundforintrusion depth evenless. The 8.4-6.7 Ma biotiteagesfromthepluton (samples 988-20, 988-25, DH-2650, andDH-3780) aretoo youngto be attributedto simpleposternplacement conductive coolingof an 11.6Ma intrusion.We therefore interpret the biotiteagesasrepresenting coolingassociated withextensional unroofing.Thisinterpretation impliesthattheplutonintruded intocountryrockwithambienttemperatures above300øC. Again,assuming 25-30øC/kmgeothermal gradients, weobtain a lowerboundfor intrusion eraplacement depthof 10-12km. Thislowerboundis consistent withgeobarometric results ona latecrystallization phaseof thepluton.Allowingfor some upliftbetweencrystallization of themainandlateleucocratic phases of thepluton,considering it crystallized andcooled 1991],weconsider anintrusion depthforthemainphase of the plutonof 10-15 km mostlikely. The DeathValley turtlebacks containa thick,welldeveloped myloniticfoliationin basement rocksthatis subparallel to theoverlyingcarbonate carapace andbrittle detachmentsurface. Involvementof foliated and lineated WillowSpringPlutonin thesefootwallmylonites (sample DH-2650) indicatesthat at leastsomeof the foliationformed duringMioceneextension[HolmandWernicke,1989;Holm andLux, 1991].Myloniticdeformation appears tohavebegun priorto intrusion of theSmithMountain Granitecomplex as suggested by the-8.9 Ma hornblende agefromdeformed gabbro-diorite (sampleDH-2650), consistent withthe observation thattheWillowSpringPlutonis moreductilely deformed thantheyounger granitic complex [Holmand Wernicke, 1990]. SmithMountainGranitecomplex.The 8.7 Ma hornblende agesobtainedfromgraniticplutonsin thecentralBlack Mountains (samples TQM-HB andTPG-SM)signifya major silicic intrusive event coeval with extensivevolcanismin the Greenwater range.The SmithMountainGraniteandcoeval plutons in thecentralBlackMountains intruded intocountry rockwithanambient temperature above300øCasindicated by the8.4 Ma biotiteagesobtained fromtheWillowSpring Plutoncountry rockintowhichit intruded.We interpret the 8.2 Ma biotiteageobtainedfromthe SmithMountainGranite asindicating continued posternplacement cooling afterthe country rockhadcooled through 300øC.The40Ar/39Ar coolingagedataandgeobarometry ontheSmithMountain Granite, takentogether, areconsistent witha depth range for crystallizationof 8.2-11.8 km. 3O MUSCOVITE DH-BWT-2 988-20 18 Tg =23.14+0.44 Ma HORNBLENDE BWT-B Ti = 24.0 + 0.4 Ma Tg = 11.03ñ 0.88 Ma Tp = 10.42ñ 0.31 Ma No Plateau Ua • I I I I Ti = 10.3 ñ 0.2 Ma , 2O BIOTITE I Ua Tg = 12.58 + 0.22 Ma Tp = 12.63 + 0.50 Ma BIOTITE I BIOTITE Ti = 12.7 + 0.2 Ma Ti = 13.4ñ0.1 lO I I I o I ol Tg = 13.22 ñ 0.29 Ma Tp = 13.23 ñ 0.23 Ma I Ma I I lOO % 39 Ar % 39 Ar 100 ,I Tg = 8.35 ñ 0.17 Ma Tp= 8.36ñ0.17 Ma Ti =8.4:1:0.1 I I I I Ma I I I lOO % 39 Ar lO 988-20 I 90-38 PLAGIOCLASE 12 HORNBLENDE DH-3780 Ti = 6.4 ñ 0.3 Ma Ti = 8.3 ñ 0.5 Ma Ma Ua Tg = 7.77 ñ 1.05 Ma Tp = 6.70.ñ 61 Ma Tg = 7.30 ñ 0.44 Ma Tp = 8.05 ñ 0.28 Ma WHOLE ROCK Tg = 6.51 + 0.65 Ma Tp = 6.31 + 0.21 Ma Ti = 6.2 + 0.1 Ma BlOTITEl i Tg =6.72 ñ0.95 Ma Tg = 6.18ñ0.15 Ma Tp = 5.89 ñ 0.51 Ma Ti = 7.0 ñ 0.1 Ma No Plateau 0 % 39 Ar 100 0 16 DH-2650 Ti = 5.9 ñ 0.4 Ma % 39 Ar HORNBLENDE 100 Tg = 8.34 + 1.63 Ma Tp = 8.77 + 0.70 Ua Ma 988-20 Ti = 8.9 + 0.6 Ma 1 oo % 39 Ar ORTHOCLASE • 16 Ti = 7.2ñ0.3 TQM-HB BIOTI• III I Tg = 6.72d:0.21 Ma III I Tp= 6.66+ 0.12Ua 0 % 39 Ar \ / Ua / I I Tg =6.06 Ma J Tp = 8.69 ñ 0.31 Ma 101 0 • 89-CC HORNBLENDE • 0 Tg = 14.31 + 0.81 Ma , ] , ] , ] ' ' % 39 Ar No Plateau Ua 40Ar/36Ar = 301 ñ 7.7 Ti = 8.7 ñ 0.3 Ma 2O 36/40 100 lO ( . I 6.7 / /•' (,..•---/ TPL-BIO JT •", lO I---I Ma -/ BIOTITE I ("•-, 8.4 • z?/ v' Ti = 6.7 + 0.1 Ma i i f (/'.,,/ I ' r , IF 5 BIOTITE ,b5 Tg = 6.59 + 0.13 Ma Tp = 6.63 + 0.13 Ma i L I Tg= 7.69+ 0.25Ma Tg = 7.85+ 0.18 Ma (.. Ti =7.9+0.1 I Ma lOO % 39 Ar lO I I I I I I I I % 39 Ar CCTB-[•• Ua I 14 \ BIOTITE lOO TQM-GW-B '3 Tg = 6.80 ñ 0.23 Ma Ti = 6.9 ñ 0.2 Ma No Plateau Ma -f\., 234 i i i i i 0 i i i \\ j i % 39 Ar 100 '•' 8 ,.._.,, BIOTITE Tg = 9.54:1:0.29Ma Tp = 9.76 ñ 0.25 Ma Ti = 9.8 ñ 0.1 Ma 0t[ [ [ 2O f[89-MPHORNBLENDE Ma' 41111 I I Tg=10.14ñ 0.50Ma Tp= 9.94.ñ 0.44Ma // / 10- / •, / / k,.. I I 0 I I I I I lOO % 39 Ar / \ / 300 =%39 Ar __100 Ma 400 AM2a-M \ • / : 200 - BIOTITE BIOTITE [] Tg = 7.88 ñ 0.23 Ma Tp = 8.00 + 0.21 Ma Tg = 234.3 ñ 2.5 Ma No Plateau TI =8.1 +-0.1Ma MUSCOVITE Ma' IH1-BIO 14 -TTPG-SM •ORNBLENDE Tg = 299.6 ñ 2.3 Ma Ti = 283.2 ñ 4.1 Ma 100 No Plateau 300' • I I 0 ' N 200 I I % 39Ar 100 lOO %39 Ar 20 •CCR-AR lO 16oo I -I 1:3 i I I I I I 100 300 RH-BIO Ua , I ] ] j I • I km MUSCOVITE Tg= 1411.6ñ 10.7Ma 0 0 Tg = 10.30ñ 1.16Ma Tp = 10.06ñ 0.39Ma Tg = 230.8 ñ 6.1 Ma Ti=9• No Plateau % 39 Ar Ti = 232.3 ñ 5.9 Ma 100 i i % 39 Ar i lOO i i i i i % 39 Ar No Plateau 500 I BIOTITE •_ Ua lOOO I % 39 Ar 2O0 AM-UNC-M ß I 0 I lOO Plate 1.The40Ar/39Ax age spectra and intercept diagram ofdated minerals and rocks with sample localities plotted onthegeologic map from Figure 2(unpattemed here). Numbers adjacent tosome localities areages (inmillions ofyears) plotted forease ofviewing theoverall cooling age pattern for biotite. i 1 oo Holmet al.' Unroofingof theBlackMountains, DeathValley Greenwaterplutons.Graniticplutonsin theadjacent Greenwater range(Figure1) aredepositionally overlainby 8-9 Ma Shoshone volcanicsandyielda biotiteplateauageof 9.76 + 0.25 Ma, substantiallyolder thanboththe hornblendeand biotiteagesfrom the SmithMountainGranitecomplex. Because field relations indicate that all silicic intrusions in the BlackMountainsare youngerthantheWillow SpringPluton [Drewes,1963],we inferthattheGreenwater plutonsrepresent crystallization of a graniticbodyintermediate in agebetween theWillow SpringPlutonand the SmithMountainGranite complex.Althoughno basement rocksareexposedin the vicinityof thispluton,we notethatit appearsto be locatedin thesamestructuralpositionor depthbeneaththelate Precambrian nonconformity andoverlyingMiocenevolcanic rocks as the basement rocks in the southeastern Black Mountains. It seemsIlkely thereforethatthisplutonintruded at shallowlevelsinto countryrock colderthan300øCandthat the9.76 Ma biotiteagerepresents a nearcrystallization age. The nearlyconcordant ageof theoverlyingShoshone volcanics indicatesunroofingandexposure priorto 9 Ma, soonafter crystallization. Myloniticdikes. Numerousporphyriticlatiteandrhyolite dikesin the centralBlack Mountainscommonlyexhibita myloniticfoliationwhich is usually(althoughnot always) absentin the countryrock adjacentto thesedikes. A 7.85 Ma biotiteageobtainedfroma dikenearWillow Springin Gold Valley indicatescrystallization of thesedikeswithin 1.0 m.y. aftercrystallization of theSmithMountainGranitecomplex. The dikenatureandtheporphyritictextureof theselate-stage intrusions indicatecolderambienttemperatures andtherefore likely a shallowerdepthof intrusionthantheolderplutonic complex.At Gold Valley, thesedikesintrudedintocountry rockundergoing rapidcoolingratesof 35ø-100øC/m.y. based on the ageandclosuretemperature differences betweenbiotite andK-feldspar.We interpretdikeintrusionasfractureinfilling of crustbrittlelydeformingduringrapidunroofing.Becausethe temperature of thedikeswouldbe substantially higherthanthe surrounding countryrockimmediatelyafteremplacement, these dikesdeformedductilelyin an overallbrittleregime,thus havinga myloniticfoliationimpartedto themwhichis largely nonexistentin the adjacentcountryrock. Thermochronologic datafromTertiaryplutons,combined with geobarometric data,providetime-depth constraints on the Mioceneintrusivehistoryof theBlackMountainscrystalline terrain. At 11.6 Ma, the Willow SpringPlutonintrudedat a depthrangeof 10-15 km into countryrock with an ambient temperature below 500øC. At ~8.7 Ma the SmithMountain Granitecomplexintrudedat a depthof 8.2-11.8 km into countryrock with temperatures above300øC. Thesetimeand depthconstraints indicateonly minorto moderateamountsof unroofing(0-6.8 km) at averageratesof 0-2.2 mm/yrbetween 11.6 Ma and 8.7 Ma. 517 exclusivelyon unmetamorphosed strataof Paleozoic, Eocambrian,or latePrecambrianage,suggesting significant preextensional depths.Oneexceptionis theareaoccupied by theAmargosachaosat thevicinityof AshfordCanyonsouthof the Mormon Point turtleback(Figure2). Here late Precambrian PahrumpGroupstrataandoverlyingTertiarystrata aredeposited onbasement whichcooledbelow350øCat approximately 1380Ma (sampleAM-UNC-M). Theserocks lie only5--6km southof exposures of theWillow Spring Plutonandtheregionallymetamorphosed NoondayDolomite on the MormonPointturtleback(Figure3). This areaoccupies thesouthernboundaryof theNopahUpland(Figure5), described asa regionof crystallinerockupliftedin thelate Precambrian (pre-Noonday time)andflankedto thesouthby PahrumpGroupstrata[Wrightet al., 1974b]. At Ashford Canyonandelsewhere, unmetamorphosed PahrumpGroup stratalie only 2-3 km belowtheTertiaryunconformity, implyingshallowdepthsat theonsetof extension.Wrightand Troxel [ 1984]havearguedthattherelativepositions of Clasts of both the Smith Mountain GranitecomplexandtheWillow SpringPlutonin theCopper CanyonFormationto thenorth[HolmandLux, 1991]indicate exposureof theserockspriorto 5 Ma. Thusdatafromthe GoldValley areaindicatean increase of unroofing ratesto greaterthan2.3-3.2 mm/yr after 8.7 Ma. Translationof theAmargosaChaos Holm andWernicke[ 1990]observed thatthecrystalline rocksin the centralBlack Mountainslie well away from Tertiaryunconformities of pre-10 Ma stratawhichlie Fig. 5. (a) Paleogeologicmap of theDeathValley region, representing timethatimmediatelypreceeded deposition of the NoondayDolomite [afterWright et al., 1974b]. Filled circles representbasalnonconformity of PahrumpGroupstrata.(b) CrosssectionX-X' just prior to Tertiaryvolcanismshowing theshallowdepthrequiredfor theNopahUplandassuming stratigraphic depthequalsstructuraldepth. Dashedlines represent latePrecambrian strata.Shadedregiondepictsthe "missing" depthdifferential(7-13 km) considering thatthe 11.6 Ma Willow SpringPlutonintrudedat a depthof 10-15 km. See text for discussion. 518 Holmet al.: Unroofingof theBlackMountains, DeathValley basementrocksandvariousPahrumpGroupsections in this area have remained intact since Precambrian time. If it is assumed thatstratigraphic depthequalsstructural depth,the paleogeography accordingto Wrightet al. [1974b]would requirethePrecambrian basement rocksmakingup the MormonPointandCopperCanyonturtlebackto lie onlya few kilometersbelow thesurfaceat theonsetof extension(Figure 5). However, the40Ar/39Ar dataandgeobarometry on Mioceneintrusions presented hereindicatea midcrustal depth (10-15 km) for theserocksduringMiocenetime. It seemsunlikelythatMioceneintrusiverocksbeneaththe Precambrian nonconformity at AshfordCanyoncouldhavea differentialdepthof 7-13 km overa distanceof only 5-6 km betweentheirexposurealongtheMormonPointturtleback and AshfordCanyon(Figure3). HolmandWernicke[1990] attributedtheproximityof theunmetamorphosed andregionally metamorphosed PahrumpGroupstratato translation of the unmetamorphosed rocksnorthwestward awayfromanoriginal positionin the southeastern BlackMountains.Translation occurred alonga detachment zoneunderlying thehighlyfaulted Amargosachaos,thedetachment zonehavinglocallycutinto basementrocksbeneaththe nonconformity, thusjuxtaposing allochthonous basement(andtheoverlyingnonconformity) ontointactbasementin the vicinityof AshfordCanyon(Figure 3). We emphasizethatthisdetachment faultwouldbe difficult to mapwherebasementwasfaultedontobasement.However, the~283 Ma muscoviteageminimumof sampleAM2a-M approaches agesobtainedfromthebasement in thesoutheastem BlackMountains(samplesRH-BIO andIH1-BIO) suggesting equivalence.In addition,thissample,collectednearerto the inferredfault thansampleAM-UNC-M, showsa disturbed theCopperCanyonturtleback.Thiscoolingagepatternis visiblein samplesfrom boththeplutonandthePrecambrian basementrockssuggesting thattheplutonthermally equilibrated with thecountryrockat temperatures abovethe closuretemperature for biotite. We interpretthenorthwest youngingof biotitecoolingagesto reflectprogressive tectonic unroofingof the CopperCanyonand MormonPoint turtlebackstowardthenorthwestfrom midcrustaldepths (temperatures above300øC),consistent with theoverall regional extension direction andwithregional westdirected tectonicdenudation suggested by Wrightet al. [1984]. Progressive unroofing wasaccompanied by footwalldike intrusionwhichalsodecrease in agetowardthenorthwest. Mica coolingagesfromthenorthern BlackMountains (the Badwaterturtleback)are substantially olderthanmicasfrom boththeCopperCanyonandMormanPointturtlebacks in the centralBlack Mountains. The dissimilarcoolingagessuggest thatrocksmakinguptheBadwaterturtleback lay at a shallower level in the crustprior to intrusionof theWillow Spring Plutonandtheonsetof unroofing thanweretherocksof the CopperCanyonandMormonPointturtlebacks. Thereforethe CopperCanyonandMormonPointturtlebacks wouldrepresent thedeepest exposed levelof theBlackMountains crustunroofed duringTertiaryextension; thisis in contradiction to the westward deepening crustalsectionhypothesis presented by Holm andWemicke [ 1990]. A possibleexplanation for the oldermicaageswhichwouldresolvethiscontradiction considers theBadwaterturtlebackas allochthonous withrespect to thesoutherntwo turtlebacks, havingbeentranslated northwestward in thedirectionof overallregionalextension similarto theAmargosa chaosdescribed above.Restoration of spectra withexcess 40Ar,acharacteristic common infaulted the Badwater turtleback southeastwardto a location either above andshearedrocks. We concludethatthethermochronologic datapresented here,whentakenin conjuction withdepth determinations for Mioceneintrusions, arebestexplainedby restorationof the Amargosachaos(andthelatePrecambrian nonconformity exposedat AshfordCanyon)15-20 km southeastward to equivalentrocksin thesoutheastern Black or southeast of theCopperCanyonturtlebackwouldaccount for thecorrectpositioning of oldermicaagesandwouldalso explaintheformationandconcentration of high-temperature Mountains. CoolingAge Pattern Samplesfrom thesoutheastern andcentralBlackMountains showa patternof coolingwith biotiteagesyoungingtoward the northwest(Plate 1). Biotitetotalgasagesof 230-235 Ma ductiledeformationfabricsaroundtheCopperCanyon turtleback 4-5 m.y.aftertheBadwater turtleback cooledbelow 300øC.Alternatively,thenorthwest dippingdetachment fault mayhaverampedupto a shallower levelin thecrusttowardthe northeast in thevicinityof theBadwaterturtleback.As dike intrusionseemsto haveaccompanied unroofing andcoolingin theGoldValley andCopperCanyonturtleback regionsat 7.9 Ma and6.8 Ma, respectively, theyoungerdikeslocated onthe Badwater turtleback (6.3 Ma) mayreflectthelaterunroofing of thatareaalbeitfrom shallowerdepths(<300øC). from Precambrian basement in the southern Black Mountains (samplesRH-BIO andIH1-BIO) suggest temperatures below 300øCwell beforethe onsetof extensionin thisregion. Shallowdepthsfor theserockspriorto Tertiaryunroofing wouldbe expectedgiventheirproximityto unmetamorphosed latePrecambrian-Cambrian andTertiarysedimentary rocks whichdepositionallyoverliebasementin thesoutheastern Black Mountains.Taking300øCas themaximumtemperature of thesesamplespriorto Tertiaryunroofing andconsidering a low geothermalgradient,we obtaina depthmaximumof 12 km priorto extension.Thermochronology andfieldrelations in theadjacentGreenwater Rangeindicateunroofingof~10 Ma shallowlevel granitesbetween9 and 10 Ma while thewestern BlackMountainrocksremaineddeeperthan10 km. In the centralBlack Mountains,biotiteageswithin the Willow SpringPlutonshowa youngingtowardsthenorthwest with samplescollectedfrom Gold Valley coolingthrough 300øC~1.5 m.y. beforesamplescollectedat andnortheast of CoolingAge versusElevation Hornblende agesfromundeformed WillowSpringPluton samples suggest uniformcoolingof theintrusion below500øC at 10.1-10.4 Ma, approximately1.0 to 1.5 m.y. after crystallization. Similarhornblende coolingagesfrom undeformed samples of theplutonwereobtained by McKenna [ 1990]. Thereis nodiscernable agedifference between samples collectedoveran elevationdifferenceof ~ 1.5km (Figure6). Thisis perhapsnot surprising considering thatthepluton intrudedintocountryrockwithtemperatures below500øCat its base.Intrusionof theplutonwouldhavecreateda temporary unstable geotherm withaninvertedisotherm at itsbase.While it is certainlypossiblethatsomecoolingmightbeattributed to denudation, we feel thatat thesehightemperatures coolingwas probablydominatedby conductive coolingof theplutonasit thermallyequilibratedwith thecountryrock. Rapid Holm et al.: Unroofingof the Black Mountains,DeathValley 2.0- biotite 519 footwallrelativeto changesin structuraldepthacrossstrike allow an estimateof theaverageinitial dip whenvariablessuch o hornblende E as amount of internal extension and amount of overburden are considered. For instance,a thick sectionof overburdenwill givea lowerestimatefor theinitial dip of thedetachment beneaththe nonconformity.Also, intemalextensionof the rangeblockwouldcausethecurrentwidthof exposed footwall to be greaterthanit initially wasandthusmakethedip estimatelower. Assumingonly 1-2 km of overburden above the nonconformityanda liberalestimateof 50% intemal 0.5 6 I I I I I 7 8 9 10 11 Age, Ma Fig. 6. Coolingageversuselevationdatafrom thecentral Black Mountains. Data pointsare from this studyandfrom McKenna [ 1990]. Hornblendeagesare from theWillow Spring Plutononly. Biotiteagesare from theplutonandfrom Precambrian basement. equilibration of a steepor invertedgeotherm coolingthrough 500øCwouldlikely maskanycompeting effectof cooling associated with vertical denudation and therefore no difference in hornblende coolingageswithelevationwouldbe expected [cf. Wright et al., 1991;McKennaandSnee,1991]. We havealsoplottedbiotitecoolingages(fromboth Precambrianandgabbro-diorite samplesfrom thecentralBlack Mountains)versussampleelevationusingdatafromthisstudy andfrom thatof McKenna[ 1990]. At first sightthemappears to be considerable scatterin thebiotitedatawithrespectto elevation(Figure6). However,coolingagesobtainedfrom specificregions(8-9 Ma agesfromtheGoldValley/Mormon Pointarea,and6.7-7.0 Ma agesfromtheCopperCanyon region)appearto showa steeppositivecorrelation with elevation.A possibleinterpretation is thatthe steepslopes represent locallya verticalcomponent of motion(present day coordinates)of the 300øCisotherm.If the motionwere approximately verticalandrelatedto unroofing, theageversus elevationdatafrom thisstudysuggests unroofingratesof ~2.54.0 km/m.y. We emphasize,however,thatcautionmustbe usedwheninterpretingsuchdatain theBlackMountains especially considering therecentevidencefor Mioceneand youngerfoldingof the pluton[Holm andLux, 1990;Pavlis, extension of therangeblock,weobtaina maximum average initialdipangleof ~30ø. Considering 3-5 km of overburden andlessintemaldisruption (10-20%) givesinitialaverage anglesof ~15ø-20ø. By usingthisandothertechniques, similar averageinitialdipshavealsobeendetermined for detachment faults in west central Arizona and southeastemCalifornia [DokkaandBaksi, 1988;Miller andJohn,1988;Fosteret al., 1990; Richardet al., 1990]. Recentmappingof theBadwaterturtleback suggests that transport of theupperplateoccurred onmoderately to steeply dippingsurfaces in themiddleanduppercrust,favoring only moderate amounts of extension in theDeathValleyregion [Miller, 1991]. In addition,the Black Mountainshavebeen citedasanexample of largefootwallupliftbeneath a planar high-angle normalfault,againrequiring onlymoderate to minorhorizontal extension [KingandEllis, 1990]. These conclusions conflictwithregionalinterpretations thatsuggest largeamounts of extension in theregion[SnowandWemicke, 1989;Stewart,1983;Wemickeet al., 1988]andwith thelow averageinitialdip of thedetachment obtainedhere. The conflicting results of theabovestudies mayberesolved in part by considering theinitialgeometry of thedetachment andits evolutionduringextension.It seemsapparent thatnearthe preextensional surfacein the southeastem Black Mountainsthe detachment initiallydippedmoderately to steeply, asindicated by themoderately to steeplyeasttiltedTertiarystrataandsteep fault-bedangles.Considering initialdipsin theupper5-10 km of 400-90ø, theaverage initialdipbelowthatdepthwouldbeof theorderof 6ø-13ø(Figure7a). Theseconsiderations implyan initiallylistricgeometry similarto thatcommonly observed on reflection seismograms of normalfaultsin theBasinandRange andelsewhere[SmithandBruhn,1984]. As extensionandunloadingof thefootwalloccurs,isostatic forcescausethefootwallto flex anduplift;thisresultsin the migration of a monoclinal flexurethrough thefootwallin the 19911. directionof transport[Hamilton,1988;Buck, 1988;Wemicke Initial Dip and Kinematicsof DetachmentFaulting rapidcoolingpattern,a resultof unroofing occurring progressively across therange.Thedifferential cooling A principalfocusof interestin continental extension concemsthe initial geometryandangleof dip of major detachmentzones[Buck, 1988; Wemicke and Axen, 1988; King and Ellis, 1990; Miller, 1991;Holm, 1991]. The thermochronologic andgeobarometric constraints presented here suggestlimits on the averageinitial dip of theBlack Mountainsdetachment.The datapresented aboveindicatethat thedeepestportionsof theBlackMountains(theregion adjacentto andoccupyingthenorthernportionof theCopper Canyonturtleback)wereat a maximumdepthof 15 km priorto the onsetof unroofing.Projectedontoa crosssection subparallel to theregionalextension directiontheserocks currentlylie -45 km awayfrom thetiltednonconformity in the southeastern BlackMountains.The currentwidthof exposed represented inthe40Ar/39Ar data, aswellastheaccompanying and Axen, 1988]. This would be reflectedin a diachronous footwalldikeintrusion in theBlackMountains, mayreflect thisprocess.Anotherconsequence wouldbethatgently dippingto subhorizontal ductilefabricsdeveloped in themiddle crust(wheretheaverage initialanglewasverylow)during extension wouldsteepen in thebrittleuppercrustduring unloading (Figure7b). As unroofingcontinued andthe steepened fabricswerebroughtnearerthesurface, theywouldbe tiltedonceagainto loweranglesastheflexurecontinued to migratethroughtheuppercrust.Thereforethehigh-angle orientation wouldnotbetheoriginalorientation asargued by Miller [1991];ratherit istheresultof anearliersteepening as therockswereunroofedfroman originallylow-angle orientationin the midcrust(Figure7). 520 Holmetal.: Unroofing oftheBlackMountains, Death Valley A ! Mylonitization priorto 12.5 Ma •' '"' '"' '"' (currentlyexposedon Badwaterturtleback) Future sliver of Tertiary strata AmargosaChaos Precambrian strata Mylonitizationat 8-9 Ma (currentlyexposedon CopperCanyonturtleback) BWT CCT lO GV (a) km 15 I I 40 6.7-7.0 Ma I 3,0 km 7.5-8.5 20 I 10 Ma Unroofing between Unroofingand dike intrusion 10-9 Ma (b) N N Fig.7. (a) Schematic crosssection (alongA-A' of Figure2) showing likelyaverage initialdipand geometry of detachment faultresponsible forunroofing of theBlackMountains andreconstructed position of Badwater turtleback rocks(BWT)priortounroofing. GV isGoldValleyregion;CCTisCopper Canyonturtleback rocks.Depthestimates areobtained fromgeobarometry andfromthermochronology. (b) Diagrammatic representation of preferred modelforunroofing of theBlackMountains [afterHamilton, 1988; Buck, 1988; and Wemicke andAxen, 1988]. Seetext for discussion. CONCLUSIONS Wehaveused 40Ar/39Ar agespectrum data, combined with geobarometry, to constrain theintrusionandunroofing history of theBlackMountains.DatafromtheGoldValleyregionof the central Black Mountains indicate intrusion of the 11.6 Ma Willow SpringPlutonintocountryrockwithtemperatures below500øCandat depthsof 10-15 km. A graniticcomplex datedat 8.7 Ma intrudedintocountryrockabove300øCat 8.211.8km depths.Intrusionof fine-grained porphyritic latite dikesindicateshallowcrustallevelsby 7.9 Ma. Thesecooling depthdatasuggest slowto moderate unroofing rates(0-2.2 mm/yr)between11.6and8.7 Ma andmorerapidrates(>2.33.2 mm/yr)after8.7 Ma for theGoldValleyregion. The southeastern Black Mountains were at shallow crustal levels(<300øC)well beforetheonsetof Tertiaryextension with basement biotitecoolingagesof 230-235 Ma. Thermochronology andfield relationsindicatethat~10 Ma shallowlevel graniticplutonsin thesouthern Greenwater Rangewereunroofedshortlyaftercrystallization (by ~9 Ma). In thecentralBlackMountainsbiotitecoolingagesin rocksof boththePrecambrian basement andsurrounding Miocene plutonsyoungto thenorthwest indicating diachronous unroofing between8.5 and6.7 Ma. Diachronous unroofing wasaccompanied by dikeintrusions whichalsodecrease in age towardthenorthwest.Biotiteagesfrom13Ma to asyoungas 6.7Ma fromtheturtlebacks indicate a midcrustal originprior to extensional unroofing.Preextensional depthsof theorderof 10-15 km andthenorthwest younging coolingagepatternare consistent withpalinspastic reconstructions of Tertiary extensionwhichrequire~80 km of westdirectedhorizontal transport of thePanamintMountains off thetopof theBlack Mountains[Stewart,1983; SnowandWemicke, 1989]. The coolingagepatternanddepthestimates obtainedhere from acrossthe Black Mountains indicate northwestward detachment with an averageinitialdipon theorderof 20ø. Startingwithan initiallylistricgeometry, progressive migration of a footwallflexurein thedirection of transport (expressed by thediachronous coolingagepattern)accomodates theobservations of moderately to steeply dippingTertiarystrata Holmetal.: Unroofing oftheBlackMountains, DeathValley in the southeasternBlack Mountains [Holm and Wernicke, 1990],andfield relationssuggesting an earlierhigh-angle detachment orientation[Miller, 1991],with thelow average initial dipsobtainedhere. Mica agesdiscordant from the overallnorthwest youngingtrend(agesfromtheAmargosa chaosandBadwaterturtleback) areexplained by northwestward transportof initially shallowercrustallevelsontodeeperlevels alongsplaysof the majordetachmentzone. 521 Aknowledgments. This work wassupported by a National ScienceFoundation grant(EAR89-71227)awardedtoBrian Wernicke.We thanktheNationalParkServicefor allowing samplingandfield mappingin theBlackMountains.We thank DavidWest for assistance in thelaboratoryanddiscussion, BrianWernickefor discussion andcomments on an early versionof themanuscript, andJohnBartleyandCalvinMiller for thoughtfulreviews. REFERENCES Armstrong,R.L., Geochronology of Tertiary igneousrocks,easternBasinandRange Province, westernUtah, easternNevada, and vicinity, U.S.A., Geochim. Cosmochim. Acta, 34, 203-232, 1970. Asmerom,Y., J.K. Snow, D.K. Holm, S.B. Jacobsen, B.P. Wemicke,andD.R. Lux, Rapid uplift and crustalgrowthin extensional environments: An isotopicstudyfrom the Death Valley region,California,Geology,18, 223-226, 1990. Bartley, J.M., and B.P. Wemicke, The Snake Rangedecollement interpretedas a major extensional shear zone, Tectonics, 3, 647659, 1984. Buck, W.R., Flexural rotationof normal faults, Tectonics, 7, 959-973, 1988. Cemen,I., and L.A. Wright, Cenozoicextension in northemDeathValley: evidencefrom the sedimentary rockssurrounding the Funeral Mountains,Geol. Soc.Am. Abstr.Programs, 20, 149, 1988. Cemen,L., L.A. Wright, R.E. Drake, and F.C. Johnson, Cenozoic sedimentation and sequenceof deformationaleventsat the southeastern end of the Furnace Creek strike- slip fault zone,DeathValley region, Califomia, in Strike-SlipDeformation,Basin Formation,and Sedimentation, editedby K.T. Biddleand N. Christie-Blick,Spec.Publ.37, $oc. Econ. Paleontol. Mineral., 127-141, 1985. Curry, H.D., "Turtleback"fault surfacesin Death Valley, California (abstract),Geol. Soc. Am. Bull., 49, 1875, 1938. Davidson,G.F., and L.W. Snee,Resettingof the hornblendeK-Ar isotopicsystemduring mylonitization- Implicationsfor direct dating of ductile shearzones (abstract),Eos Trans. AGU, 71, 1662, 1990. DeWitt, E., J.F. Sutter,L.A. Wright, and B.P. Troxel, Ar-Ar chronologyof Early Cretaceous regionalmetamorphism, FuneralMountains, Califomia--A casestudyof excessargon, Geol. Soc.Am. Abstr.Programs,20, A16A17, 1988. Dokka, R.K., and A.K. Baksi,Thermochronology and geochronology of detachmentfaultsof the Mojave ExtensionalBelt, California: A progressreport, Geol. Soc. Am. Abstr. Programs, 20, A16, 1988. Drewes,H., Geologyof the FuneralPeak quadrangle,California,on the easternflank of Death Valley, U.S.G.S.Prof. Pap. 413, 78 pp., 1963. Fleck, R.J., Age and TectonicSignificanceof VolcanicRocks,DeathValley Area, Califomia, Geol. Soc. Am. Bull., 81, 28072816, 1970. Foster, D.A., T.M. Harrison, C.F. Miller, and K.A.Howard, The40Ar/39Ar thermochronology of the easternMojave Desert,California, and adjacentwestern Arizonawith implications for the evolutionof metamorphiccorecomplexes,J. Geophys. Res., 95, 20,005-20,024, 1990. Hamilton,W., Detachment in the DeathValley region, Califomia and Nevada, U.S. Geol. Surv. Bulletin, 1790, 763-771, 1988. Hammarstrom,J.M., and E.-A. Zen, Aluminum in hornblende:An empiricaligneous geobarometer,Am. Mineral., 71, 1297-1313, movement and strain rate of Cenozoic extensionalfaulting in the Death Valley area, California, Geol. Soc. Am. Abstr. Programs, 1986. 22, A227, 1990. Harrison, T.M., and I. McDougall, Investigations Meurer, K.J., and T. Pavlis, Evolution of the of an intrusive contact, northwest Nelson, Black Mountain crustalblock, Death Valley, New Zealand- II. Diffusionof radiogenicand California:two componentrotationduring Neogeneextension(abstract),Eos Trans. excess 40Ar/39Ar agespectrum analysis, AGU, 72, 469-470, 1991. Geochim. Cosmochim. Acta, 44, 2005-2020, 1980. Miller, M.G., High-angleorigin of the currently low-angleBadwaterTurtlebackfault, Death Holm, D.K., Initial dip, geometry,and kinematics Valley, Califomia, Geology, 19, 372-375, of detachmentfaulting in the DeathValley 1991. region, California, Geol. Soc. Am. Abstr. Miller, J., and B.E. John, Detached stratain a Programs, 23, A181, 1991. Tertiary low-anglenormalfault terrane, Holm, D.K., and R.K. Dokka, Major late Miocene southeastern California:A sedimentaryrecord coolingof the middlecrustassociated with of unroofing,breaching,and continuedslip, extensionalorogenesisin the Funeral Geology, 16, 645-648, 1988. Mountains,California, Geophys.Res. Lett., Noble, L.F., Structuralfeaturesof the Virgin 18, 1775-1778, 1991. Springarea, Death Valley, California,Geol. Holm, D.K., and D.R. Lux, The CopperCanyon Soc. Am. Bull., 52, 941-1000, 1941. Formation:A recordof unroofingandTertiary Otton, J.K., Geology of the centralBlack folding of the Death Valley Turtleback Mountains, Death Valley, California: The surfaces,Geol. Soc.Am. Abstr.Programs,23, Turtlebackterrane,Ph.D. thesis,155 pp., 35, 1991. University Park, Penn. State Univ., 1977. Holm, D.K., and B.P. Wernicke, Tertiary ductile Parry, W.T., and R.L. Bruhn, Fluid inclusion deformationanduplift of the Black evidence for minimum 11 km vertical offset Mountains,Death Valley extendedterrain, on the Wasatchfault, Utah, Geology, 15, 67Califomia (abstract),Eos Trans. AGU, 70, 70, 1987. 599, 1989. Richard, S.M., J.E. Fryxell, and J.F. Sutter, Holm, D.K., and B. Wemicke, Black Mountains Tertiary structureandthermalhistoryof the crustalsection,Death Valley extendedterrain, Harquahalaand BuckskinMountains,westCalifornia, Geology, 18, 520-523, 1990. centralArizona: Implicationsfor denudation Holm, D.K., J.K. Snow,andD.R. Lux, Uplift by a major detachmentfault system,J. historyof the Black Mountainscrystalline Geophys.Res., 95, 19,973-19,989, 1990. terrain, Death Valley region, Califomia Smith, R.B., and R.L. Bruhn,Intra-plate (abstract),Eos Trans. AGU, 70, 1335, 1989. Hubbard, M.S.,andT.M.Harrison, 40Ar/39Ar age constraints on deformation and metamorphismin the Main CentralThrust Zone andTibetanSlab, EastemNepal Himalaya, Tectonics,8, 865-880, 1989. Johnson,M.C., and M.J. Rutherford, Experimentalcalibrationof the aluminum-in- hornblende geobarometer with applicationto Long Valley caldera(Califomia) volcanic rocks, Geology, 17, 837-841, 1989. King, G., andM. Ellis, The originof largelocal uplift in extensionalregions,Nature, 348, 689-693, 1990. Lachenbruch,A.H., and J.H. Sass,Models of an extendinglithosphere andheatflow in the BasinandRangeprovince,in Cenozoic TectonicsandRegionalGeophysics of the WestemCordillera,editedby R.B. Smithand G.P. Eaton, Mere. Geol. Soc. Am., 152, 209250, 1978. Lux,D.R., 40Ar/39Ar ages forminerals from the amphibolitedynamothermalaureole,Mont Albert,Gaspe,Quebec,Can. J. Earth Sci.,23, 21-26, 1986. McDougall, I., and T. M. Harrison, Geochronology and Thermochronology by the40Ar/39Ar Method, Oxford University Press,New York, 1988. McKenna, L.W., III, Processesof continental extension asviewedfromthe DeathValley region,California,Ph.D. thesis,198 pp., Mass.Inst. of Technol.,Cambridge,1990. McKenna,L.W., andL.W. Snee,Timingof extensional tectonics of the eastern Basin and Range: Inferencesof structuralstyle from seismicreflection data, regional tectonicsand thermal-mechanical models of brittle-ductile deformation,J. Geophys.Res., 89, 57335762, 1984. Snow,J.K., andB. Wemicke, Uniqueness of geologicalcorrelations:An examplefrom the Death Valley extendedterrain,Geol. Soc.Am. Bull., 101, 1351-1362, 1989. Stewart, J.H., Extensional tectonics in the Death Valley area,California:Transportof the PanamintRange structuralblock 80 km northwestward,Geology, 11, 153-157, 1983. Streitz,R., andM.C. Stinson,(compilers),Death Valley sheet,Geologicmap of California, scale 1:250,000, Calif. Div.of Mines and Geol., Sacramento, 1974. Wemicke, B., and G.J. Axen, On the role of isostasyin the evolution of normal fault systems,Geology, 16, 848-851, 1988. Wemicke, B., G.J. Axen, and J.K. Snow, Basin and Range extensionaltectonicsat the latitude of Las Vegas, Nevada, Geol. Soc.Am. Bull., 100, 1738-1757, 1988. Wright,L.A., Overviewof theroleof strike-slip andnormalfaultingin the Neogenehistoryof the regionnortheastof DeathValley, California- Nevada, in Late Cenozoic Evolutionof the Southern GreatBasin,Open File 89-1, editedby M.A. Ellis, pp. 1-12, Nev. Bur. of Mines and Geol., Reno, 1989. Wright,L.A., andB.W. Troxel,Geologyof the 522 Holm et al.: Unroofingof theBlackMountains,DeathValley northem half of the Confidence Hills 15' Am., CordilleranSection,Las Vegas, Nevada, Mexico, Guidebookeditedby M.J. quadrangle,Death Valley region,eastem California: The area of the Amargosachaos, Cal. Div. of Mines andGeol., map sheet34, 1974b. Walawender and B.B. Hanan, Geol. Soc. of scale 1:24,000, Sacramento, 1984. Wright, L.A., J.K. Otton,andB.W. Troxel, Turtlebacksurfacesof DeathValley viewedas phenomena of extension, Geology,2, 53-54, 1974a. Wright,L.A., B.W. Troxel,E.G. Williams,M.T. Roberts, and P.E. Diehl, Precambrian SedimentaryEnvironments of the Death Valley Region,EasternCalifornia,Fieldtrip 1, Death Valley Region,Californiaand NevadaGuidebook, pp. 27-35, Geol.Soc.of Wright, L.A., R.E. Drake, and B.W. Troxel, Evidencefor westwardmigrationof severe Cenozoic extension, southeasternGreat Basin, California, Geol. Soc. Am. Abstr. Programs, 16, 701, 1984. Wright, L.A., L. Serpa,andB.W. Troxel, Tectono-chronologic model for wrenchfault relatedcmstalextension,Death Valley area, California, Geol. Soc. Am. Abstr. Programs, 19, 898-899, 1987. Am. Annual Meeting, San Diego, California, pp. 93-127, 1991. D.K. Holm, Departmentof Geology,Kent State University,Kent, Ohio 44242. D.R. Lux, Departmentof Geology, Universityof Maine, Orono,Maine 04469. J.K. Snow, Division of Geologyand PlanetarySciences,California Instituteof Technology,Pasadena,California91125. Wright, L.A., et al., Cenozoicmagmaticand tectonic evolution of the east-central Death (ReceivedAugust20, 1991 Valley region, California, Geological revised December 6, 1991 Excursions acceptedJanuary23, 1992.) in Southern California and
© Copyright 2026 Paperzz