Math 131 EXAM 3 Fall 2011 Solve. If the equation is an identity or contradiction, then indicate so. 3 7 1 1) - y - (y + ) = ( y + 1) 5 9 6 90 - 3 7 1 y - (y + ) = ( y + 1)90 5 9 6 - 54y - 90y - 70 = 15y + 15 - 144y - 70 = 15y + 15 - 85 = 159y 85 =y 159 - 85 159 Solve the equation. 2) 3(x - 1) = 15x + 3(x 2 + 2) 3x - 3 = 15x + 3x 2 + 6 0 = 3x 2 + 12x + 9 0 = x 2 + 4x + 3 0= x+3 x+1 x+3=0 x=- 3 x+1=0 x=- 1 -3, -1 3) 2x 1/2 - 3x 1/4 - 2 = 0 2x 1/4 + 1 x1/4 - 2 = 0 2x 1/4 + 1 = 0 2x 1/4 = - 1 x1/4 - 2 = 0 x1/4 = 2 x1/4 = - x = 24 1 2 x = 16 16 1 4) 2(x + 5) 2 - 13(x + 5) = - 18 2(x + 5) 2 - 13(x + 5) +18 = 0 2(x + 5) - 9 (x + 5) - 2 = 0 2x + 10 - 9 x + 3 = 0 2x + 1 x + 3 = 0 2x + 1 = 0 x+3=0 2x = - 1 x=- 3 x=- - 1 2 1 ,- 3 2 5) 4x -2 + 12x -1 + 9 = 0 2x -1 + 3 2 = 0 2x -1 + 3 = 0 2x -1 = - 3 x-1 = - x=- - 3 2 2 3 2 3 6) x3 - 4x 2 - 25x + 100 = 0 x2 x - 4 - 25 x - 4 = 0 x 2 - 25 x - 4 = 0 x2 - 25 = 0 x2 = 25 x=±5 x-4=0 x=4 ± 5, 4 2 7) 16 - 81y4 = 0 16 = 81y4 16 = y4 81 ± 4 16 =y 81 y=± 8) 2 3 1 4 -2 + = 2 2 2 z + 2z - 35 z - 25 z + 12z + 35 1 4 -2 + = z-5 z+7 z-5 z+5 z+5 z+7 z+5 z+7 z-5 1 z-5 z+7 + 4 z-5 z+5 = -2 z+5 z+7 z-5 z+5 z+7 z+5+4z+7 =-2z-5 z + 5 + 4z + 28 = - 2z + 10 5z + 33 = - 2z + 10 7z = - 23 z=- - 23 7 23 7 Solve the absolute value equation. 9) |-10x - 7| = |-5 + 7x| - 10x - 7 = - -5 + 7x - 10x - 7 = 5 - 7x - 12 = 3x - 10x - 7 = -5 + 7x - 2 = 17x 2 =x 17 -4=x - 4, - 2 17 3 10) - - 4 2 1 x+ + 19 = 11 5 9 6 4 2 1 x+ =- 8 5 9 6 2 1 5 x+ =- 8 9 6 4 2 1 x+ = 10 9 6 2 1 x + = 10 9 6 18 2 1 x+ = 10(18) 9 6 4x + 3 = 180 4x = 177 177 x= 4 2 1 x + = - 10 9 6 18 2 1 x+ = -10(18) 9 6 4x + 3 = - 180 4x = - 183 183 x=4 177 183 , 4 4 Solve the equation. 11) 3x - 1 + 17 = 10 3x - 1 = - 17 12) x2 - 2 + x = 4 x2 - 2 = 4 - x 2 x2 - 2 = 4 - x 2 x2 - 2 = 16 - 8x + x 2 8x = 18 18 x= 8 x= 9 4 9 4 13) 11 = 15 + (12 - x)1/3 - 4 = (12 - x)1/3 -4 3 = (12 - x)1/3 3 - 64 = 12 - x 76 = x 76 4 14) 5 9 - 5x + 5 -7 + 6x = 0 3 9 - 5x = - -7 + 6x 3 3 3 3 9 - 5x = - -7 + 6x 9 - 5x = - - 7 + 6x 9 - 5x = 7 - 6x x = -2 3 -2 Solve the equation by using the square root method. 15) 12(a + 5)2 + 6 = 0 12(a + 5)2 = - 6 6 (a + 5)2 = 12 Solve the equation by completing the square. 16) -2x 2 + 3x - 9 = 0 -2x 2 + 3x = 9 x2 - 3 9 x=2 2 x2 - 3 9 72 9 x+ =+ 2 16 16 16 x- 3 2 63 =4 16 5 Solve the problem by first writing an equation relating all of the variable. 17) If f varies jointly as h and the square root of q, and f = -96 when q = 4 and h = 3, 25 9 find f when q = and h = . 144 20 f = kh q - 96 = k 3 4 f = - 16 9 20 9 5 20 12 - 96 =k 3 4 f = - 16 - 32 =k 2 f=- 3 25 144 - 16 = k 18) The volume V of a given mass of gas varies directly as the temperature T and inversely as the pressure P. If V = 490.0 in.3 when T = 350° and P = 10 lb/in.2 , what is the volume when T = 170° and P = 20 lb/in. 2? V= kT p 490 = k 350 10 490 10 =k 350 V= 14 170 20 V = 119 14 = k 6
© Copyright 2026 Paperzz