Section 1-07 - Polynomials

Unit 1 – 7 Polynomials
Name:
Name
Monomial
Examples
1. 3 2.
3. 5
(oneterm)
degree:4
1. 2
2.
3
3.
3
degree:3
degree:9
2. √
2
degree:3
1.
2
Binomial
(twoterms)
Non‐Examples
1. 2
2. 5√ 3. 3 degree:2
degree:0
degree:1
1.
Trinomial
(threeterms)
1.
Polynomial
(oneormoreterms)
2.
1. 3
2. 5
3.
2
2
3
2
2 2
5
1
√ 1
degree:5
degree:4
3
degree:6
degree:4
2. 2
3
1. 3
5
5
2. 2
3√ 1.EXPANDandSIMIPLIFY(Also,listthedegreeandleadingcoefficientofyouranswer).
b. (5x3 – 3x4 − 2x – 9x2 – 2) + (3x3 +2x2 – 5x – 7)
a. (7x  3)  (2  2x)
d.  23x  2 y   5 x  6 y   2 x  7
c. 3( x  5)  8 x

 
f. 2 x 3  5 x  8  5 x 3  9 x 2  11x  5

g. 2 x  33x  5

 
e. 2 x 2  5 x  6 x 2  2 x
h. 2 x  5

2
M. Winking (Section 1‐7)
p. 15
(1Continued).EXPANDandSIMIPLIFY

i. 4 y 2 y 2  2 y

k.  x  3x  5
j. - 6y 2 (3y 2 - 2y - 7)
l.
m.
Determineanexpressionthatrepresents:
Determineanexpressionthatrepresents:
Perimeter= Area=
Perimeter=
Area=
2. Dividethefollowing.
a.
32a 5  24a 3
8a 3
b.
21x 4  3 x 3
3x 2
c.
36a 3d 5  72a 2 d 3
6ad 2
3. Factor the GCF from each expression
a. 15 x 4  3x 5
b. 16 x 2  24
b.
a.
c. 18x 4 y 7  36 x 3 y 6  42 x 5 y 5
c.
d. 3x x  3  2 x  3
d.
M. Winking (Section 1‐7)
p. 16