Solving Double Absolute Value Equations Case 1: Both Abs are “+” Case 2: Abs are “+ & -” Case 3: Both Abs are “-” (𝒙 − 𝟏) + (𝟑𝒙 − 𝟐) = 2 (𝒙 − 𝟏) + −(𝟑𝒙 − 𝟐) = 2 4x − 3 = 2 −2x + 1 = 2 −2x = 1 4x = 5 1 5 x =− x = 2 4 −(𝒙 − 𝟏) + (𝟑𝒙 − 𝟐) = 2 2x − 1 = 2 2x = 3 3 x = 2 −(𝒙 − 𝟏) − (𝟑𝒙 − 𝟐) = 2 −4x + 3 = 2 −4x = −1 1 x = 4 Solving Double Absolute Value Equations Check on Calculator Ans: 𝟓 𝟏 , 𝟒 𝟒 Warm – Up: Page 28 Left 2, down 3 Slope 𝟏𝒂 𝟑𝒂 𝟓𝒂 , , ,… 𝟏 𝟏 𝟏 𝟏𝒂 𝟏 𝟏𝒂 𝟕𝒂 , ,… 𝟏 𝟏 Inverses (reciprocal) 𝒂 𝒂 𝒂 , , ,… 𝟏 𝟑 𝟓 Translations Reflections Dilations Shift “c” up Shift “c” down Shift “c” left Shift “c” right Reflection over y-axis Reflection over x-axis Vertical Shrink (narrow) Vertical Stretch (wide) Horizontal Stretch (wide) Horizontal Shrink (narrow) Shift “6” left Shift “2” down Shift “3” right and 7 up Refl. x-axis, 7 left and 10 down Vert. Shrink of 1 , 2 2 up Right 4, up 2 left 3, down 5 Right 8, down 4 Vertex = (-1, -4) 𝟐 y = 𝒙+𝟏 −𝟒 y =(x + 1)(x + 1) −𝟒 y = 𝒙𝟐 + 𝟏𝒙 + 𝟏𝒙 + 𝟏 − 𝟒 y = 𝒙𝟐 + 𝟐𝒙 − 𝟑 b =𝟐 c = -3 Slope 𝟏𝒂 𝟑𝒂 𝟓𝒂 , , ,… 𝟏 𝟏 𝟏 𝟏𝒂 𝟏 𝟏𝒂 𝟕𝒂 , ,… 𝟏 𝟏 Inverses (reciprocal) 𝒂 𝒂 𝒂 , , ,… 𝟏 𝟑 𝟓 𝒚 = 𝒙; v=(0,0) 𝟏 𝟏 𝟏 𝒔𝒍𝒐𝒑𝒆 = , , , … . 𝟏 𝟑 𝟓 𝒚= 𝒙 𝒚= 𝒙+𝟑−𝟐 𝒚= 𝒙 + 𝟑 − 𝟐;v=(-3,-2) 𝒍𝒆𝒇𝒕 𝟑, 𝒅𝒐𝒘𝒏 𝟐 v=(-4,0); 𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒗𝒆𝒓 𝒙 − 𝒂𝒙𝒊𝒔, 𝒍𝒆𝒇𝒕 𝟒 Right 5, up 7 v = (5, 7) v=(-4,1); 𝒍𝒆𝒇𝒕 𝟒, 𝒖𝒑 𝟏 v=(2,5); 𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒗𝒆𝒓 𝒙 − 𝒂𝒙𝒊𝒔, 𝒓𝒊𝒈𝒉𝒕 𝟐, 𝒖𝒑 𝟓 𝒚 = −𝒙𝟐 + 𝟏𝟎 𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒗𝒆𝒓 𝒙 − 𝒂𝒙𝒊𝒔, 𝒖𝒑 𝟏𝟎
© Copyright 2025 Paperzz