Document

Soliton modelocking of frequency combs in microresonators
Michael L. Gorodetsky
RQC Spring School, 20 Mar. 2013
History. Optical frequency combs
Mode-locked lasers
Spence et al, Optics Letters, 16(1):42–44,
January 1991, etc…
f-2f Interferometer
S.T. Cundiff & J. Ye, Rev. Mod. Phys.75, 325 (2003)
Udem, Holtzwarth, Hänsch, Nature, 416, 233 (2003)
Nobel Prize Physics 2005: "for their
contributions to the development of
laser-based precision spectroscopy,
including the optical frequency comb
technique"
Theodor Hänsch
John Hall
Combs in microresonators
Review: TJ Kippenberg, R. Holtzwarth, S.A. Diddams, Science (2011) „Microresonator based Optical Frequency
Combs“
-
2007: Demonstration of Kerr comb generation and equidistance (MPQ)
2008: Fully phase stabilized microresonator comb (MPQ)
2008: Crystalline resonator frequency combs (OEWaves)
2009: Fully integrated SiN comb generation (Cornell)
2010: Numerical simulation of frequency comb (JPL)
2011: Mid IR frequency comb generation using crystalline resonators (MPQ/EPFL/JPL)
2011: Octave spanning frequency comb generation
Outstanding challenge(s): integrated self-referenced frequency comb and integration into
atomic clocks
3
Idealized picture
•
Spacing 850 GHz
SiO2
Ø = 80μm
•
•
Si3N4
Ø = 112μm
•
•
•
First Frequency Comb in a WGM
Resonator
First Stabilization of WGM Comb,
First Octave Spanning Comb
(Del’Haye et al., 2007, 2008, 2009)
Fully CMOS compatible
Mid-IR Transparency
Robust
(Levy et al., 2010, Foster et al., 2011)
CaF2
Ø = 2.6mm
•
•
Spacing 25 GHz
Mid-IR Transparency
“Low” Repetition Rate
(Savchenkov et al., 2008)
P. Del’Haye, A. Schliesser, O. Arcizet, R. Holzwarth, T. Kippenberg, Nature, 450 (2007)
P.Del’ Haye,A. Schliesser,O. Arcizet, R. Holzwarth, T. Kippenberg, PRL, 101, 053903 (2008)
P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, T.J. Kippenberg, submitted (2011), see also: arXiv:0912.4890
J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster. A. Gaeta, M. Lipson, Nature Photonics, 4 (2010)
M. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, A.L. Gaeta, arXiv:1102.0326 (2011)
A. Savchenkov, A. Matsko, V.Ilchenko, I. Solomatine, D. Seidel, L. Maleki PRL 101, 093902 (2008)
Applications
SiO2
Si3N4
CaF2
MgF2
Figure taken from: T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Science 29, 2011
Microresonator as a source of frequency
comb and femtosecond pulses
Frequency comb
Microtoroid
10000 times smaller
Dimensions: ~ 1м
Diameter: ~100 µm
7
8
Internal intensity
Numerical modeling
Detuning
9
COMB AND SOLITONS
Bad Honnef, Novenber, 2011
Resonator
Numerical
modeling
Experiment
12
13
COMB EVOLUTION
MODE-LOCKED OR NOT MODE-LOCKED
TIME DOMAIN MEASUREMENTS:
FROG, ULTRAFAST TEMPORAL
MAGNIFIER (PicoLuz)
Numerical modeling of the comb
(Chembo Y.N., Strekalov D.V., Yu N. PRL, 104(10):103902, 2010)
2K+1 equations, (K+1)(8K2+7K+3)/3 nonlinear terms
18
TEN LITTLE INDIANS (НЕГРИТЯТ)
Nonlinear Schrödinger Equation (Lugiato-Lefever)
20
Modeling of steps
Numerical simulation of 500 modes
Conclusions:
1. Soliton mode-locking of frequency combs in
WGM using only intrinsic mechanisms (without
modulators, Kerr-lenses, saturable absorbers etc.)
is demonstrated
2. Numerical and analytical model of combs and
solitons in optical microresonators in perfect
agreement with experiment is obtained
3. A microsource
demonstrated
of
femtosecond
pulses
is
THANKS FOR YOUR ATTENTION!