Soliton modelocking of frequency combs in microresonators Michael L. Gorodetsky RQC Spring School, 20 Mar. 2013 History. Optical frequency combs Mode-locked lasers Spence et al, Optics Letters, 16(1):42–44, January 1991, etc… f-2f Interferometer S.T. Cundiff & J. Ye, Rev. Mod. Phys.75, 325 (2003) Udem, Holtzwarth, Hänsch, Nature, 416, 233 (2003) Nobel Prize Physics 2005: "for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique" Theodor Hänsch John Hall Combs in microresonators Review: TJ Kippenberg, R. Holtzwarth, S.A. Diddams, Science (2011) „Microresonator based Optical Frequency Combs“ - 2007: Demonstration of Kerr comb generation and equidistance (MPQ) 2008: Fully phase stabilized microresonator comb (MPQ) 2008: Crystalline resonator frequency combs (OEWaves) 2009: Fully integrated SiN comb generation (Cornell) 2010: Numerical simulation of frequency comb (JPL) 2011: Mid IR frequency comb generation using crystalline resonators (MPQ/EPFL/JPL) 2011: Octave spanning frequency comb generation Outstanding challenge(s): integrated self-referenced frequency comb and integration into atomic clocks 3 Idealized picture • Spacing 850 GHz SiO2 Ø = 80μm • • Si3N4 Ø = 112μm • • • First Frequency Comb in a WGM Resonator First Stabilization of WGM Comb, First Octave Spanning Comb (Del’Haye et al., 2007, 2008, 2009) Fully CMOS compatible Mid-IR Transparency Robust (Levy et al., 2010, Foster et al., 2011) CaF2 Ø = 2.6mm • • Spacing 25 GHz Mid-IR Transparency “Low” Repetition Rate (Savchenkov et al., 2008) P. Del’Haye, A. Schliesser, O. Arcizet, R. Holzwarth, T. Kippenberg, Nature, 450 (2007) P.Del’ Haye,A. Schliesser,O. Arcizet, R. Holzwarth, T. Kippenberg, PRL, 101, 053903 (2008) P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, T.J. Kippenberg, submitted (2011), see also: arXiv:0912.4890 J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster. A. Gaeta, M. Lipson, Nature Photonics, 4 (2010) M. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, A.L. Gaeta, arXiv:1102.0326 (2011) A. Savchenkov, A. Matsko, V.Ilchenko, I. Solomatine, D. Seidel, L. Maleki PRL 101, 093902 (2008) Applications SiO2 Si3N4 CaF2 MgF2 Figure taken from: T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Science 29, 2011 Microresonator as a source of frequency comb and femtosecond pulses Frequency comb Microtoroid 10000 times smaller Dimensions: ~ 1м Diameter: ~100 µm 7 8 Internal intensity Numerical modeling Detuning 9 COMB AND SOLITONS Bad Honnef, Novenber, 2011 Resonator Numerical modeling Experiment 12 13 COMB EVOLUTION MODE-LOCKED OR NOT MODE-LOCKED TIME DOMAIN MEASUREMENTS: FROG, ULTRAFAST TEMPORAL MAGNIFIER (PicoLuz) Numerical modeling of the comb (Chembo Y.N., Strekalov D.V., Yu N. PRL, 104(10):103902, 2010) 2K+1 equations, (K+1)(8K2+7K+3)/3 nonlinear terms 18 TEN LITTLE INDIANS (НЕГРИТЯТ) Nonlinear Schrödinger Equation (Lugiato-Lefever) 20 Modeling of steps Numerical simulation of 500 modes Conclusions: 1. Soliton mode-locking of frequency combs in WGM using only intrinsic mechanisms (without modulators, Kerr-lenses, saturable absorbers etc.) is demonstrated 2. Numerical and analytical model of combs and solitons in optical microresonators in perfect agreement with experiment is obtained 3. A microsource demonstrated of femtosecond pulses is THANKS FOR YOUR ATTENTION!
© Copyright 2026 Paperzz