17.3 Divergence Theorem Lukas Geyer Montana State University M273, Fall 2011 Lukas Geyer (MSU) 17.3 Divergence Theorem M273, Fall 2011 1 / 11 Fundamental Theorems of Vector Analysis I ZZ F · ds = Green’s Theorem curl F dA D ∂D I I D plane domain, F = hP, Qi ∂Q ∂P curlhP, Qi = − ∂x dy I ZZ F · ds = Stokes’ Theorem I I curl F · dS S ∂S S surface in space, F = hP, Q, Ri ∂R ∂Q ∂P ∂R ∂Q ∂P curlhP, Q, Ri = − , − , − ∂y ∂z ∂z ∂x ∂x ∂y ZZ ZZZ F · dS = Divergence Theorem ∂W I I div F dV W W region in space, F = hP, Q, Ri ∂P ∂Q ∂R divhP, Q, Ri = + + ∂x ∂y ∂z Lukas Geyer (MSU) 17.3 Divergence Theorem M273, Fall 2011 2 / 11 Divergence Theorem Theorem ZZ ZZZ F · dS = div F dV W ∂W Remarks W is a region in space. ∂W is oriented with outward-pointing normal vector F = hF1 , F2 , F3 i is a smooth vector field. ∂ ∂ ∂ , , · hF1 , F2 , F3 i div F = ∇ · F = ∂x ∂y ∂z = ∂F1 ∂F2 ∂F3 + + ∂x ∂y ∂z Lukas Geyer (MSU) 17.3 Divergence Theorem M273, Fall 2011 3 / 11 Example I Example Verify the Divergence Theorem for the region given by x 2 + y 2 + z 2 ≤ 4, z ≥ 0, and for the vector field F = hy , x, 1 + zi. Computing the surface integral The boundary of W consists of the upper hemisphere of radius 2 and the disk of radius 2 in the xy -plane. The upper hemisphere is parametrized by G (φ, θ) = (2 sin φ cos θ, 2 sin φ sin θ, 2 cos φ), 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ 2π. Tφ = h2 cos φ cos θ, 2 cos φ sin θ, −2 sin φi, Tθ = h−2 sin φ sin θ, 2 sin φ cos θ, 0i, n = Tφ × Tθ = h4 sin2 φ cos θ, 4 sin2 φ sin θ, 4 cos φ sin φi n points up, so the orientation is correct. Lukas Geyer (MSU) 17.3 Divergence Theorem M273, Fall 2011 4 / 11 Example II Example Verify the Divergence Theorem for the region given by x 2 + y 2 + z 2 ≤ 4, z ≥ 0, and for the vector field F = hy , x, 1 + zi. Computing the surface integral G (φ, θ) = (2 sin φ cos θ, 2 sin φ sin θ, 2 cos φ), 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ 2π. n = h4 sin2 φ cos θ, 4 sin2 φ sin θ, 4 cos φ sin φi F · n = h2 sin φ sin θ, 2 sin φ cos θ, 1 + 2 cos φi · h4 sin2 φ cos θ, 4 sin2 φ sin θ, 4 cos φ sin φi = 16 sin3 φ cos θ sin θ + 4 cos φ sin φ(1 + 2 cos φ) Lukas Geyer (MSU) 17.3 Divergence Theorem M273, Fall 2011 5 / 11 Example III Example Verify the Divergence Theorem for the region given by x 2 + y 2 + z 2 ≤ 4, z ≥ 0, and for the vector field F = hy , x, 1 + zi. Computing the surface integral G (φ, θ) = (2 sin φ cos θ, 2 sin φ sin θ, 2 cos φ), 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ 2π. F · n = 16 sin3 φ cos θ sin θ + 4 cos φ sin φ(1 + 2 cos φ) ZZ Z π/2 Z 2π F · dS = S1 0 Z π/2 Z 2π + 4 cos φ sin φ(1 + 2 cos φ) dθ dφ 0 Lukas Geyer (MSU) 16 sin3 φ cos θ sin θ dθ dφ 0 0 17.3 Divergence Theorem M273, Fall 2011 6 / 11 Example IV Example Verify the Divergence Theorem for the region given by x 2 + y 2 + z 2 ≤ 4, z ≥ 0, and for the vector field F = hy , x, 1 + zi. Computing the surface integral ZZ Z π/2 Z 2π F · dS = S1 0 Z 16 sin3 φ cos θ sin θ dθ dφ 0 π/2 Z 2π + 4 cos φ sin φ(1 + 2 cos φ) dθ dφ 0 0 Z = 0 + 8π π/2 (cos φ + 2 cos2 φ) sin φ dφ 0 1 2 = 8π − cos2 φ − cos3 φ 2 3 Lukas Geyer (MSU) φ=π/2 = 8π φ=0 17.3 Divergence Theorem 1 2 + 2 3 = M273, Fall 2011 28π . 3 7 / 11 Example V Example Verify the Divergence Theorem for the region given by x 2 + y 2 + z 2 ≤ 4, z ≥ 0, and for the vector field F = hy , x, 1 + zi. Computing the surface integral The disk of radius 2 in the xy -plane is parametrized by G (r , θ) = (r cos θ, r sin θ, 0), Tr 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π. = hcos θ, sin θ, 0i, Tθ = h−r sin θ, r cos θ, 0i, n = Tr × Tθ = h0, 0, r i n points up, so the orientation is incorrect, and we have to change the sign on n. Lukas Geyer (MSU) 17.3 Divergence Theorem M273, Fall 2011 8 / 11 Example VI Example Verify the Divergence Theorem for the region given by x 2 + y 2 + z 2 ≤ 4, z ≥ 0, and for the vector field F = hy , x, 1 + zi. Computing the surface integral G (r , θ) = (r cos θ, r sin θ, 0), 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π. n = h0, 0, −r i ZZ Z 2 Z 2π F · dS = S2 hr sin θ, r cos θ, 1i · h0, 0, −r i dθ dr 0 Z 0 2 Z 2π (−r ) dθ dr = −2π = 0 Lukas Geyer (MSU) Z 0 17.3 Divergence Theorem 2 r dr = −4π 0 M273, Fall 2011 9 / 11 Example VII Example Verify the Divergence Theorem for the region given by x 2 + y 2 + z 2 ≤ 4, z ≥ 0, and for the vector field F = hy , x, 1 + zi. Computing the surface integral Adding up the results gives ZZ ZZ ZZ F · dS + F · dS = ∂W Lukas Geyer (MSU) S1 F · dS = S2 17.3 Divergence Theorem 28π 16π − 4π = . 3 3 M273, Fall 2011 10 / 11 Example VIII Example Verify the Divergence Theorem for the region given by x 2 + y 2 + z 2 ≤ 4, z ≥ 0, and for the vector field F = hy , x, 1 + zi. Computing the volume integral ∂F1 ∂F2 ∂F3 + + = 0 + 0 + 1 = 1. ∂x ∂y ∂z ZZZ ZZZ 16π 1 4π · 23 = div F dV = 1 dV = vol(W) = · 2 3 3 W W div F = Lukas Geyer (MSU) 17.3 Divergence Theorem M273, Fall 2011 11 / 11
© Copyright 2026 Paperzz