GROUNDWATER DEPENDENCE OF WETLANDS: A TRACER APPROACH Methods • Hydraulics • Seepage meters • Water balance • Environmental tracers • radon • oxygen-18, deuterium • ion chemistry Approach Tracers will be useful for identifying groundwater inflow to surface water if: 1. Concentrations of the tracers in surface runoff and groundwater are distinct 2. Tracers are conservative (do not undergo chemical reactions once in the wetland) The proportion of groundwater is determined by comparing surface water, groundwater and wetland concentrations. Environmental Tracers Radon • unreactive gas, only source is from decay of uranium (and radium) in aquifer materials • negligible concentrations in atmosphere • radioactive, half-life 3.8 days • zero concentration in rainfall (runoff), high concentration in groundwater Chloride • relatively unreactive • low concentrations in rainfall, higher concentrations in groundwater Radon Increased Groundwater Inflow Increased Residence Time radioactive decay gas exchange evaporation Increased Residence Time Increased Groundwater Inflow Chloride Groundwater Radon X Groundwater, Short Residence Time Surface Water, Surface Water, Short Residence Time Long Residence Time X Ground Water, Long Residence Time Chloride Rainfall Groundwater Reconnaisance Survey • Radon and chloride concentration measured in 37 wetlands and 25 bores. • Runoff chemistry not measured, although rainfall data is available for chloride. Runoff concentrations of radon assumed to be zero. • Sampling took place in November 2004 and February 2005. • Duplicate samples collected from 3 wetlands. 10 (c) PicP EP1 GSw ToppWSB HTF2 CockL (1) 0.1 DRSD GordL 222 Rn (Bq/l)Feb2005 1 034 DMS TM1 GGD 0.01 TWH (2) GrS DRSG WWZ2 RndS(1) LBLL TWH GGB 7SisB RUS A GHL A WWZ LEdward RUS B TMM MtMI 0.01 0.1 222 1 Rn (Bq/l)Nov2004 10 Radon Groundwater, Short Residence Time Surface Water, Surface Water, Short Residence Time Long Residence Time 222 Rn (Bq/L) 8 6 4 2 Ground Water, Long Residence Time Chloride (a) HTF1 PicP PicP EP1 EP3 GSw EP1 HS AD 0.4 DRSZ 0.3 GSw ToppWSB ToppWSB 0.2 DRSG WWZ2 HTF2 TWH (2) GrS CockL (1) TWH (1) TWH (2) GrS DRSG HNU CockL (2) 0.1 LBLL DRSD WWZ2 HSY HTF2 7SisB 7SisA GordL LBLL RUS A CSW CockL (1) DRSD GGB TWH (1) GHL (1) GordL 7SisB GGB WWZ TMM GGD 034 RUS A 034 DMS(2) DMS TM1 MtMI GGD GHL RUS B B TM1TMM RUS MtMI WWZ 0.0 10 100 RndS LtBool RndS GHL B LEdward LEdward 1000 - Cl (mg/L) LLeake LLeake 10000 Tracer Mass Balance Steady state, advective model: k E Is, cs Q V=Az, c Ig , c g ∂V = I s + I g − Q − EA = 0 ∂t ∂cV = I s cs + I g c g − Qc − kAc − λVc = 0 ∂t c= I s cs + I g c g I s + I g − EA + kV + λV tr = Is + Ig V Ionic Tracers • if we choose conservative, unreactive ionic tracers (e.g., chloride), then λ = 0, k = 0 c= I s cs + I g c g I s + I g − EA + kV + λV c= • unknowns Is, Ig I s cs + I g c g I s + I g − EA Radon • unreactive gas, only source is from decay of uranium (and radium) in aquifer materials • negligible concentrations in atmosphere • cs = 0 c= c= • unknowns Is, Ig I s cs + I g c g I s + I g − EA + kV + λV I g cg I s + I g − EA + kV + λV Simultaneous Solution • requires two tracers • measure c1, c2, cs1, cs2, cg1, cg2 • estimate E, k, z • λ is known • solve for Ig and Is Rule S A Rule S B Grants S Round S Cockatoo L Honans Scrub AD Honans Scrub U Honans Scrub Y Lt. Bool Lagoon Picaninnie Ponds Green S Gordon Lagoon Topperweins S Border S 7 Sisters A 7 Sisters B Lake Edward Honans Scrub TF1 Honans Scrub TF2 Woolwash Z Woolwash Z2 Diag. Rd. S D Diag. Rd. S Z Cole S West Trail Waterhole Deadman S Greenrise L Ewens Pond Lt. Blue L Diag. Rd. S G Gran Gran B Gran Gran D Mt. McIntyre PS The Marshes M Blue Tea Tree S Lake Leake Ig/Is Ig/V (d -1) 100 (a) 10 1 0.1 0.01 0.001 0.0001 100 (c) 10 1 0.1 0.01 Moderate Dependence High Dependence Diagonal Road Swamp G Diagonal Road Swamp Z Blue Tea Tree Swamp Cole Swamp West Deadman Swamp Ewens Ponds 1 Ewens Ponds 3 Diagonal Road Swamp D Gran Gran B Green Swamp Gran Gran D Greenrise Lake Grants Swamp Honans Scrub AD Honans Scrub TF2 Honans Scrub TF1 Little Blue Lake The Marshes M Honans Scrub U Honans Scrub Y Trail Waterhole Woolwash Z Little Bool Lagoon Low Dependence Round Swamp Border Swamp Topperwien Swamp Cockatoo Lake Piccaninnie Ponds Gordons Lagoon Woolwash Z2 Lake Edward Lake Leake Mt. McIntyre Perched Swamp Rule Swamp A Rule Swamp B Seven Sisters Swamp A Seven Sisters Swamp B Is this too good to be true? Uncertainties in Model • spatial variability of groundwater chemistry Further Uncertainties in Model • spatial variability of wetland water chemistry • radon diffusion from sediments Radon Diffusion from Sediments Radon Production in Sediments Radon Emanation Measurements Radon (Bq/L) 0.01 0 20 γ c= λε 0.1 1 10 100 −1 ⎛ ⎛ ⎞ ⎛ ⎞ ⎞⎟ D λε λε ⎜1 − ⎜1 + ⎟ exp⎜ − z ⎟⎟ ⎜ ⎜ ⎜ k + λb ⎟ ⎟ D ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ Depth (cm) 40 60 80 100 Green Swamp 120 γ = 0.003 Bq/cm3/day Radon-222 (Bq/L) in Honan South 24/05/06 0.35 0.33 0.50 0.23 0.39 0.35 0.08 0.18 0.13 0.09 0.21 0.19 0.34 0.26 0.22 0.29 0.67 0.74 20m 0.59 Radon-222 (Bq/L) in Honan South 25/07/06 0.32 0.49 0.14 0.58 0.26 0.17 0.57 0.42 0.50 0.17 0.75 0.12 0.59 0.42 0.17 0.06 0.20 0.07 0.19 0.15 0.19 0.16 0.24 0.19 0.26 0.23 0.30 0.79 0.23 0.12 0.26 0.11 20m 0.31 0.34 0.95 0.45 1.05 1.05 0.40 0.90 0.48 0.62 0.32 0.72 0.11 0.54 0.84 0.41 0.87 1.03 0.85 0.92 EC (uS/cm) in Honan South surface water, 25/07/06 1063 1034 996 1048 1029 1056 1017 1021 1047 1007 1034 966 1031 1055 998 772 874 901 968 973 910 932 928 898 896 898 1010 1011 986 1000 970 919 975 962 872 974 828 811 948 874 942 805 828 941 922 20m 1011 908 916 900 951 937 922 854 Conclusions • radon and chloride provide a valuable tool for determining groundwater input to wetlands • diffusional input is relatively small, and can be corrected for or measured • limited mixing poses problems in very shallow lakes • radon cannot distinguish between different groundwater sources (e.g., perched versus regional groundwater)
© Copyright 2026 Paperzz