Name ________________________________________ Date __________________ Class__________________ LESSON 5-2 Reading Strategy Follow a Procedure Dividing rational expressions can be thought of as multiplying by the reciprocal of the divisor. In order to divide a rational expression, rewrite the division as multiplication, simplify, and multiply. STEP 1 5 x 2 10 x 3y 6y 2 STEP 2 5x 2 3y 6 y 2 10 x x 1 2y 2 Multiply by the reciprocal of the divisor. Simplify by dividing out common factors. STEP 3 x 4y Multiply. Answer each question. 1. For 8x , 8 x 16 a. Simplify the expression. ____________________ b. For which value of x is the expression undefined? ____________________ c. Explain why the expression is undefined for this value. ____________________________________________________________________________________ 2. For the expression 6 x 3 y 2 2 xy 2 7z 4 21z 2 a. Rewrite as multiplication. ________________________ b. Simplify. c. Multiply. _________________________ ________________________ d. For which value is the resulting expression undefined? ____________________ 3. For the expression 3( x 1) 9( x 1) 2( x 2) 4( x 2) a. Rewrite as multiplication. ________________________ b. Simplify. c. Multiply. _________________________ ________________________ d. For which value is the resulting expression undefined? 4. Explain how to check the results of division. ________________________ ____________________________________________________________________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 5-18 Holt McDougal Algebra 2 b. T3 = 1.067 T2 5. 6x + 8 x−4 6. c. T3 = 1.143 T1 7. 4x + 3 x − 3x − 4 8. −x + 2 x2 − 1 9. x2 6 10. 2 x + 5x 12. 5x x + 4x + 3 4. D 5. A Reading Strategies 1. a. x x−2 11. 1 b. x = 2 13. 54.5 miles per hour c. Because x = 2 makes the denominator of the expression equal to 0 Practice B 2 2 1. 15x3y6 2. (x − 1)(x + 2)(x − 3) 6 x 3 y 2 21z 2 ⋅ 7z 4 2 xy 2 3. b. 3x 2 3 ⋅ z2 1 6x − 8 ; x ≠ −4 x+4 4. c. 9x 2 z2 −2 x + 14 5 ;x ≠ 2x − 5 2 5. 2x 2 + 7 x + 4 ; x ≠ 4, x ≠ −3 x 2 − x − 12 6. 2x 2 − 5 x − 7 ; x ≠ 6, x ≠ −3 x 2 − 3 x − 18 2. a. d. z = 0 3( x − 1) 4( x + 2) 3. a. ⋅ 2( x + 2) 9( x − 1) b. 1 2 ⋅ 1 3 7. x 2 − 4x + 2 ; x ≠ −3, x ≠ 5 x 2 − 2 x − 15 c. 2 3 8. −2 x 2 − 3 x + 6 ; x ≠ −2, x ≠ 9 x 2 − 7 x − 18 d. The resulting expression is never undefined. 9. 4. By multiplying the result by the divisor; if it is correct their product should be the dividend. RATIONAL EXPRESSIONS Practice C Practice A 3x ; x ≠ −1 x +1 3. 12x2 2. x 2 − 4x + 3 10. x 2 + 11x + 30 12 x − 24 3 x + 3x 2 + x + 3 11. 2.6 6 packages per hour 5-3 ADDING AND SUBTRACTING 1. 2 −2 x 2 + 6 x + 12 x 2 + 2x −2 x + 1 5 ;x ≠ 2x − 5 2 4. (x + 1)(x + 2) 1. 13 x − 2 ; x ≠ −3 2x + 6 2. x 2 + 28 x ; x ≠ −4, x ≠ 0 3x 2 ( x + 4) Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A57 Holt McDougal Algebra 2
© Copyright 2026 Paperzz