Calibrating the Planck Cluster Mass Scale with CLASH Mariana Penna-Lima Centro Brasileiro de Pesquisas Fı́sicas - CBPF in collaboration with J. Bartlett, E. Rozo, J.-B. Melin, J. Merten, A. Evrard, M. Postman, E. Rykoff arXiv:1608.05356 (submitted to A&A) XIII New Physics in Space - São Paulo – November 30, 2016 Mariana Penna-Lima Calibrating the Planck Cluster Mass Scale with CLASH 1/12 Cosmology with Galaxy Clusters Abell 1689 Largest bounded structures Cosmology with Galaxy Clusters Abell 1689 Largest bounded structures d 2N dzd ln M c = Asurvey H(z) Dc2 (z) dn(M,z) d ln M dn(M,z) d ln M M = − ρmM(z) f (σM , z) σ1M ddσ ln M Cosmology with Galaxy Clusters Abell 1689 Largest bounded structures Top hat, Ωm = 0.3, ΩΛ = 0.7, σ8 = 0.9 100000 d 2N dzd ln M dN/dz 10000 c = Asurvey H(z) Dc2 (z) dn(M,z) d ln M dn(M,z) d ln M = 1000 M − ρmM(z) f (σM , z) σ1M ddσ ln M Mariana Penna-Lima 100 0 w = −1 w = −0.8 w = −0.6 0.2 0.4 0.6 0.8 z 1 1.2 1.4 Calibrating the Planck Cluster Mass Scale with CLASH 2/12 DM Halo ⇒ Cluster Photometric Redshift z phot = z true + z bias ± σz0 (1 + z) Surveys: Dark Energy Survey (DES) – 5 filters, σz0 = 0.03, z . 1.4; Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS) – 54 narrow-band filters, σz0 = 0.003, z < 1.0; Satélite Euclid – 7 filters, σz0 = 0.025 – 0.053, z . 2.0. Mass-observable Relation Cluster mass is not directly observable Major source of uncertainty Mass proxies: X-ray luminosity and ICM total thermal content, SZ signal strength, richness, weak and strong lensing... × Z Z Z ~ d 2 N(λi , ziphot , θ) true = d ln M dλ dz true Φ(M, z) dz phot dλ ~ d 2 N(M, z true , θ) P(λi |λtrue ) P(λtrue | ln M) P(ziphot |z true ) true dz d ln M Mariana Penna-Lima Calibrating the Planck Cluster Mass Scale with CLASH 3/12 Scaling relation calibration In general, we can write ln (MO /M0 ) = ln(1 − bO ) + αO ln (Mtrue /M0 ) , where O is the mass proxy, such as the richness, SZ signal... αO and bO are the slope and the bias, respectively, of the mass scaling relation. Calibration can be performed using cluster number counts and/or cluster clustering (correlation function), where the parameters of the mass-observable relations are fitted along with the cosmological ones. Mariana Penna-Lima Calibrating the Planck Cluster Mass Scale with CLASH 4/12 Scaling relation calibration Simulations indicate that weak lensing (WL) mass estimates incur smaller bias than, e.g., X-ray HSE (hydrostatic equilibrium) ones. Meneghetti et al. (2010) and Becker & Kravtsov (2011) Another approach: calibration of a O1 -mass relation using a O2 -mass relation, given that the O1 and O2 mass estimates are independent. Given two samples, one assumes that sample mean mass ratio is an unbiased estimator of the mass bias between O1 and Mtrue , i.e., MO1 = 1 − bO1 . MO2 S In this analysis, αO1 = αO2 = 1 e bO2 = 0. Mariana Penna-Lima Calibrating the Planck Cluster Mass Scale with CLASH 5/12 Planck mass scaling calibration with CLASH CLASH - Cluster Lensing And Supernova survey with Hubble 25 clusters Mass estimates from weak and strong lensing (Merten et al. (2015), Umetsu et al. (2016) ) MCL [10 14 h −1 M¯ ] 21 clusters in common with Planck z ∈ [0.188; 0.89] 13 clusters present in the Planck Catalog of SZ Sources (PSZ1), and 8 are detected in the Planck temperature maps 11 10 9 8 7 6 5 4 3 2 1.4 PSZ1 Lower S/N 1.4 2 3 4 5 MPL [10 14 h −1 M¯ ] Mariana Penna-Lima 6 7 8 9 10 11 Calibrating the Planck Cluster Mass Scale with CLASH 6/12 Planck mass scaling calibration with CLASH Given the Planck and CLASH mass estimates, and the corresponding MPL = 1 − bSZ , (∆(ln ρ))2 = (∆(ln MPL ))2 + (∆(ln MCL ))2 error bars: ρ = M CL Inverse variance weighted mean: hρiS = 0.72 ± 0.057 Bootstrap - weighted mean: E (hρiS ) = 0.72 ± 0.059 Bootstrap - unweighted mean: E (hρiS ) = 0.76 ± 0.052 Penna-Lima et al. (2016) 1.4 1.2 MPL /MCL 1.0 0.8 0.6 0.4 0.2 0.03 Weighted mean Bootstrap 1σ 4 5 Unweighted mean Bootstrap 1σ 6 7 MCL [10 14 h −1 M¯ ] 8 9 10 11 Weighing the Giants program (WtG) von der Linden et al. (2014) Canadian Cluster Comparison Project (CCCP) Hoekstra et al. (2015) REFLEX + BCS Simet et al. (2015) Mariana Penna-Lima Calibrating the Planck Cluster Mass Scale with CLASH 7/12 Pseudo Number Counts Error bars on bSZ are underestimated since we are assuming that: αSZ = αL = 1, bL = 0. This approach also neglects any correlation between the lensing (L) and SZ signals, and the intrinsic scatters of the L and SZ mass distributions. We introduce a new method to calibrate the mass scaling relations when the selection function is unknown. Implemented in the Numerical Cosmology library (NumCosmo - S. Vitenti & M. Penna-Lima, ascl:1408.013 ) Cluster Pseudo Number Counts: NcClusterPseudoCounts Y 1 Z ∞ (i) (i) ~ d ln MTrue n(MTrue , z i )P(MPL , MCL |MTrue , θ), L= N −∞ i ~ P(MPL , MCL |MTrue , θ) Z = d ln MSZ d ln ML P(MPL |MSZ ) ~ ×P(MCL |ML )P(ln MSZ , ln ML |MTrue , θ) and n(MTrue , z) = f (MTrue ) Mariana Penna-Lima dn(MTrue , z) d 2 V . d ln MTrue dzdΩ Calibrating the Planck Cluster Mass Scale with CLASH 8/12 Results Selection function: f (MTrue ) = 1 2 h 1 + erf ln Mtrue √ −ln Mcut 2σcut i MCMC analyses using NcmFitESMCMC algorithm. Fitting {αSZ , bSZ , σSZ , αL , bL , σL , r , Mcut , σcut , zmin , zmax } +0.43 Flat prior on bL : 1 − bSZ = 0.71+0.45 −0.19 , 1 − bL = 0.95−0.23 Gaussian prior on bL = 0.0 ± 0.08 (Umetsu et al. (2014) ): 1 − bSZ = 0.73+0.10 −0.09 Fixing αSZ = αL = 1.0 and bL = 0.0: 1 − bSZ = 0.74 ± 0.07 Mariana Penna-Lima Calibrating the Planck Cluster Mass Scale with CLASH 9/12 αSZ 5 0 1 − bSZ σSZ Mariana Penna-Lima αL 1 − bL L cut cut Calibrating the Planck Cluster Mass Scale with CLASH 10/12 σ r .0 .6 lnM σ 0.6 0.4 0.2 .4 34 0.8.0 34 34 33 0.6 0.0 0.6 0.6 0.4 0.2 1.4 0.0 1.2 1.0 0.8 1.5 0.6 1.2 0.9 0.8 0.6 0.6 0.4 0.2 0 1.2 0.05 1.0 0.7 0.5 1.5 1.2 0.9 0.6 0.0 0.2 0.4 σcut 0.6 lnMcut 33 34 34 34 .6 .0 .4 .8 0.6 r 0.0 0.6 0.0 0.2 0.4 σL 0.6 0.6 0.8 1.0 1 − bL 1.2 1.4 0.6 αL 0.9 1.2 1.5 0.0 0.2 0.4 σSZ 0.6 0.8 1 − bSZ 0.5 0.7 1.0 1.2 0 5 0 5 Results: MCMC - Gaussian prior on bL = 0 ± 0.08 Tension between clusters and Planck CMB Reduces the tension between CMB and clusters, 1.34σ. Mariana Penna-Lima Calibrating the Planck Cluster Mass Scale with CLASH 11/12 Conclusions Cluster Pseudo Counts: new approach to calibrate mass scaling relations, considering the selection function and cosmology. We adopted a generic form for the CLASH selection function. Further studies should consider form well motivated from simulations, for example. Planck e Red-sequence Cluster Survey (RCS2): calibrating the SZ and N200 scaling relations (7000 clusters). Mariana Penna-Lima Calibrating the Planck Cluster Mass Scale with CLASH 12/12
© Copyright 2025 Paperzz