Formula Sheet: Equations: q = m c ∆T q = n C ∆T ∆E = q + w ∆E

Formula Sheet: Gas constant: 8.314 Joules mole‐1K‐1 1.98 calories mole‐1K‐1 0.0821 Latm mole‐1K‐1 Conversion: 1 calorie = 4.184 Joules 1 Latm = 101.3 Joules o
C + 273.15 = K Faraday's constant, F: 96500 coulombs mole‐1 Equations: [A]o - [A]t = kt
[A]t = [A]oe-kt
1
1
=
+ kt
[A]t
[A]o
k = Ae
-
Ea
RT
q = m c T q = n C T w
E = q + w E = nCvT H=qp H = E + PV Ho=nprodHfo(products) ‐ nreactHfo(reactants) H = nCpT Cv = 3/2 R Cp – Cv = R ln
P dV ∆
Suniverse= Ssystem+ Ssurroundings So=nprodSo(products) ‐ nreactSo(reactants) q rev
T
T dq
rev
S  
T
T
T
S  nC ln
T
S 
1
2

 
1

 
P
V 
  nR ln
S  nR ln
P
V 
1
nCdT
T
2
T
1
T
2
1

2
2
Go= Ho ‐TSo G = Go + RT ln Q Go = ‐RT ln K o
o
o
G =nprodGf (products) ‐ nreactGf (reactants) Go= ‐ nFEo Compound ΔHf° (kJmole‐1) So (Jmole‐1K‐1) Compound
ΔHf° (kJmole‐1) So (Jmole‐1K‐1) Al2O3 (s) BaCO3 (s) Br (g) Br2 (g) C (diamond) CCl4 (g) CO (g) CO2 (g) CH4 (g) C2H4 (g) C2H6 (g) C3H8 (g) C6H6 (g) C6H6 (l) CH3OH (g) CH3OH (l) C2H5OH (g) C2H5OH (l) Ca(OH)2 (s) ‐ 1676 ‐ 1216 111.9 30.91 1.90 ‐ 102.9 ‐ 110.2 ‐ 393.5 ‐ 74.81 52.26 ‐ 84.68 ‐ 103.8 82.93 48.99 ‐ 200.7 ‐ 238.7 ‐ 234.4 ‐ 277.7 ‐ 986.1 51.00 112.13 245.35 2.43 309.41 197.90 213.64 186.19 219.83 229.49 269.91 269.20 173.26 237.65 126.78 282.00 160.67 76.15 CuO (s) HBr (g) HCl (g) HF (g) HI (g) H2O (g) H2O (l) H2S (g) Hg (g) KCl (s) MnO2 (s) NH3 (g) N2O (g) NO2 (g) N2O4 (g) O3 (g) SO2 (g) SO3 (g) ZnO (s) ‐ 157.3 ‐ 36.40 ‐ 92.31 ‐ 271.1 26.48 ‐ 241.8 ‐ 285.8 ‐ 20.63 61.32 ‐ 436.7 ‐ 520.0 ‐ 46.11 82.05 33.18 9.16 142.7 ‐ 296.8 ‐ 395.7 ‐ 348.3 43.51 198.7 186.69 173.51 206.31 188.74 69.96 205.64 174.89 82.68 53.14 192.51 220.00 240.45 304.3 237.65 248.1 256.6 43.9