Notes ~ 14.2-14.3 (Circular Functions) ~ FILLED IN

Algebra 2/Trig Honors
Name:
NOTES: Circular Functions (14.2 and 14.3)
 WARM-UP
DIRECTIONS: Use your knowledge of special right triangles to solve for x and y.
1)
2)
3)
4) Find the point of intersection of the terminal ray of a 120 angle and the unit circle.
 UNIT CIRCLE
(Do Activity with Radians
and degrees)
The Circular Functions (14.2)
 Reference Angle, ’
EXAMPLE: Find the reference angle for
a) 286
b) 225
c) 480
 The Six Trigonometric Functions
EXAMPLE: The terminal ray of  contains (-4, 3). Evaluate the six trig functions.
EXAMPLE: If cos  
3
, what is the exact value of sin ?
7
 Sine and Cosine (… and the Unit Circle)
 If the terminal ray of angle  in standard position contains (x, y) on the unit circle, then …
 Ranges of cos  and sin :
 Trig Functions of Special Angles

Cos 
Sin 
Tan 
Sec 
Csc 
Cot 
30
45
60
[USE YOUR KNOWLEDGE OF THE ABOVE TABLE AND REFERENCE ANGLES TO FILL IN THE
COORDINATES ON THE UNIT CIRCLE BEFORE COMPLETING THE FOLLOWING EXAMPLE …]
EXAMPLE: Find the exact values of the following …
a) cos 225
b) tan 150
c) sec 300
 SIGNS OF TRIG FUNCTIONS
 USING THE CALCULATOR TO APPROXIMATE VALUES …
EXAMPLE: Approximate the following
a) cos 20
b) sin 45
EXAMPLE: Approximate sec 28
EXAMPLE: If sin  = 0.5299 and 0 <  < 90, what is ?
EXAMPLE: If 0 <  < 90 and cot  = 1.92, what is ?
EXAMPLE: Estimate  if sin  = -0.214 and 90 <  < 270.
 TRIG DEFINITIONS
 PYTHAGOREAN IDENTITIES
 For any angle  …
 For any angle  …
 For any angle  …