Question: Compute R x2 1−x2 dx. Answer: −x + Question: Compute R∞ 0 1 1 ln |1 − x| + ln |1 + x| + C 2 2 xe−x dx. Answer: 1 Question: Compute R 1 x(1+(ln(x))2 ) dx. Answer: tan−1 (ln(x)) + C Question: Find the length of the curve: y = ln(cos(θ)), 0 ≤ θ ≤ π/4. Answer: √ ln( 2 + 1) Question: Determine whether the sequence an = ln(2 − n1 ) converges or diverges. If it converges, find its limit. Answer: Converges, limit = (ln(2))− Question: Determine whether the sequence an = find its limit. n3 n2 +1 converges or diverges. If it converges, Answer: Diverges Question: Determine whether the sequence an = find its limit. cos(n) 3n converges or diverges. If it converges, Answer: Converges, limit = 0 Question: Determine whether the series find its limit. P∞ 2 n=1 n(n+2) 1 converges or diverges. If it converges, Answer: Converges, limit = Question: Determine whether the series find its limit. n2 n=1 1−2n2 P∞ 3 2 converges or diverges. If it converges, Answer: Diverges Question: Determine whether the series its limit. P∞ 1 n=1 2n converges or diverges. If it converges, find Answer: Converges, sum = 1 Question: Determine whether the sequence an = find its limit. 3n−1 4n converges or diverges. If it converges, Answer: Converges, limit = 0 Question: Determine whether the sequence an = find its limit. (−1)n n! converges or diverges. If it converges, Answer: Converges, limit = 0 Question: Compute R 2 √x dx 1−x2 converges or diverges. If it converges, find its limit. Answer: p 1 [sin−1 (x) − x 1 − x2 ] + C 2 Question: Determine whether the series its limit. P∞ n=0 2n +1 3n converges or diverges. If it converges, find Answer: Converges, sum = Question: Determine whether the series its limit. P∞ n=1 2 7 n 4 9 2 converges or diverges. If it converges, find Answer: Diverges Question: Determine whether the series its limit. P∞ 1 n=1 n2 +n converges or diverges. If it converges, find Answer: Converges, sum = 1 Question: Compute R x2 +7x−16 x2 +6x−7 dx. Answer: x + 2 ln |x + 7| − ln |x − 1| + C Question: Compute R 1 x2 +4x+5 dx. Answer: tan−1 (x + 2) + C Question: Find the exact area of the surface obtained by rotating the curve: y = 32 x2 , 1 ≤ x ≤ 2 around the y-axis. Answer: 2π 3/2 [37 − 103/2 ] 27 3
© Copyright 2026 Paperzz