MATH 1113 PRACTICE FINAL EXAM (I) 1. Find and simplify the difference quotient for the given function f ( x) 2 x 6 , that is, find f ( x h) f ( x ) ,h 0. h -----------------------------------------------------------------------------------------------------------------------------------------2. The graph of the function f ( x ) x is shown below. On the same xy- plane, use transformation rules to graph g( x) 3 x 4 5 . Label three points on the graph of the transformed function. (-2, 2) (2, 2) (0, 0) -----------------------------------------------------------------------------------------------------------------------------------------3 3. Find the inverse function of f ( x) 8 x 1 . -----------------------------------------------------------------------------------------------------------------------------------------4. 2 2 Given P ( x) ( x 1) ( x 16) . a. What is the degree of the function? b. Determine the zeros of the function. State the multiplicity of each zero and if the graph crosses the x-axis or touches the x-axis and turns around, at each zero. Zero Multiplicity Odd/ Even Behavior of the graph at the zero a. Touches the x-axis and turns around b. Crosses the x- axis a. Touches the x-axis and turns around b. Crosses the x- axis a. Touches the x-axis and turns around b. Crosses the x- axis 5. Radioactive Decay Radioactive iodine is used by doctors as a tracer in diagnosing certain thyroid gland disorders. This type of iodine decays in such a way that the mass remaining after t days is given by the function 𝑚(𝑡) = 6.1𝑒 −0.087𝑡 , where 𝑚(𝑡) is measured in milligrams. a. The doctor administers the tracer dose on Day Zero. Find the amount at time 𝑡 = 0. b. How long will it take for the radioactive iodine to decay to 10% of the original amount. Round the answer to the nearest whole number. -----------------------------------------------------------------------------------------------------------------------------------------x2 6. Given the rational function r ( x ) , ( x 3) ( x 5) a. Find the vertical asymptotes of the graph of r (x ) , if any. b. Find the x intercepts of the graph of r (x ) . c. Find the y intercept of the graph of r (x ) . d. Find the horizontal asymptote of the graph of r (x ) , if there is one. e. Use parts (a – d) to sketch the graph of r (x ) . Label the vertical and horizontal asymptotes. -----------------------------------------------------------------------------------------------------------------------------------------7. Use the properties of logarithms to expand the logarithmic expression as much as possible. x3 y ln ( x 1) 9 -----------------------------------------------------------------------------------------------------------------------------------------8. Simply each expression without using a calculator. a. 3 log 3 b. log 2 2 x -----------------------------------------------------------------------------------------------------------------------------------------9. Solve the logarithmic equation log 2 (𝑥 + 6) − log 2 (𝑥) = 2 10. Answer. 20𝜋 10.a) The angle 𝜃 = 3 in standard position. 10.b) State an angle between 0 and 2 𝜋 which is coterminal to the angle 𝜃. -----------------------------------------------------------------------------------------------------------------------------------------11. Given the triangle below, find the exact value of csc 𝜃. C a=25 b 𝜃 A c=24 B -----------------------------------------------------------------------------------------------------------------------------------------17𝜋 12. Find the exact value of tan (− 6 ). -----------------------------------------------------------------------------------------------------------------------------------------13. If a distance from a helicopter to a landing pad is 300 feet and the angle of depression is 40 . Rounded to the nearest foot, find the distance on the ground from a point directly below the helicopter to the landing pad. -----------------------------------------------------------------------------------------------------------------------------------------14. Use an addition or subtraction formula to find the exact value of cos 15º. -----------------------------------------------------------------------------------------------------------------------------------------15. Find the exact values of the following expressions: 1 a. tan (cos−1 (− 4)) 7𝜋 b. sin−1 (sin ( 4 )) 1 16. Given the trigonometric function f ( x ) 2 cos x 2 4 a. Determine the amplitude of f ( x ) . b. Determine the period of f ( x ) . c. Determine the phase shift of f ( x ) . d. Sketch one period of the graph of f ( x ) .Label the x and y intercepts. ---------------------------------------------------------------------------------------------------------------------------------17. If tan(t ) 12 , and t is an angle in quadrant IV, find the exact value of the following 9 a. tan(2t ) t b. cos 2 ---------------------------------------------------------------------------------------------------------------------------------18. Verify the trigonometric identity csc t cos t cot t sin t -----------------------------------------------------------------------------------------------------------------------------------------19. Find all the exact solutions to the following equation on the interval [0,2 ) . sin x 2 sin x cos x 0 -----------------------------------------------------------------------------------------------------------------------------------------20. Refer to the figure below, depicting a triangle with sides and angles as shown. Use the Law of Sines and/or the Law of Cosines to find the following: a. The length of the side b to the nearest tenth. b. The measure of the angle A in degrees rounded to the nearest whole number. Addition and Subtraction Formulas: sin(u v) sin u cos v cos u sin v sin(u v) sin u cos v cos u sin v cos(u v) cos u cos v sin u sin v cos(u v) cos u cos v sin u sin v tan u tan v 1 tan u tan v tan u tan v tan(u v ) 1 tan u tan v tan(u v ) Double Angle Formulas: sin(2u) 2 sin u cos u 2 2 cos(2u) cos u sin u 2 cos(2u) 2 cos u 1 2 cos(2u) 1 2 sin u 2 tan u tan(2u) 2 1 tan u Half-Angle Formulas: sin u 1 cos u , (± 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑄𝑢𝑎𝑑𝑟𝑎𝑛𝑡) 2 2 u 1 cos u , (± 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑄𝑢𝑎𝑑𝑟𝑎𝑛𝑡) 2 2 u 1 cos u sin u tan 2 sin u 1 cos u cos Law of Sines: a b c , where a, b, c are lengths of sides and A, B, C are the opposite angles. sin A sin B sin C Law of Cosines: 2 2 2 a b c 2bc cos A , where a, b, c are lengths of sides and A is the angle opposite sid 2 2 2 b a c 2ac cos B , where a, b, c are lengths of sides and B is the angle opposite side b. 2 2 2 c a b 2ab cos C , where a, b, c are lengths of sides and C the angle opposite side c. Arc Length formulas: s r , where is a central angle.
© Copyright 2026 Paperzz