SELECTIVE DISSOLUTION AND DETERMINATION OF SULPHIDES IN NICKEL ORES BY THE BROMINE-METHANOL METHOD URHO PENTTINEN, VEIKKO PALOSAARI and TUOMO SIURA PENTTINEN, U., PALOSAARI, V. and SIURA, T. 1977: Selective dissolution and determination of sulphides in nickel ores by the bromine-methanol method. Bull. Geol. Soc. Finland 49 (2): 79—84. Bromine-methanol dissolution, which is mainly used in analysis of metallurgical specimens, has been applied to geological samples. It has been established that a solution of bromine-methanol dissolves sulphides and arsenides very selectively but attacks silicates and oxides only slightly. An exception is pyrite, of which merely 7 to 8 °/o is dissolved under the conditions defined in the analytical instructions. Urho Penttinen, Outokumpu Co, P.O. Box 27, SF-02101 Espoo 10, Finland. Veikko Palosaari, Outokumpu Co, SF-83500 Outokumpu, Finland. Tuomo Siura, Outokumpu Co, SF-29200 Harjavalta, Finland. Introduction Economically, t h e most i m p o r t a n t nickelb e a r i n g m i n e r a l s in F i n l a n d a r e p e n t l a n d i t e , p y r r h o t i t e , m a c k i n a w i t e , millerite, g e r s d o r f fite, niccolite, v i o l a r i t e a n d b r a v o i t e . In silicates t h e a b u n d a n c e of nickel is distinctly lower. Olivine, p y r o x e n e s , a m p h i b o l e s a n d micas, i n c l u d i n g s e r p e n t i n e s , a r e t h e p r e d o m i n a n t silicates in this c o u n t r y in w h i c h nickel replaces i s o m o r p h i c a l l y o t h e r metals. T h e c o n c e n t r a t i o n of nickel in olivine is comp a r a t i v e l y high, a v e r a g i n g 1330 p p m (Häkli 1971) in F i n n i s h peridotites. P y r o x e n e s a n d a m p h i b o l e s a r e only slightly dissolved in acids, u n l i k e olivine a n d s e r p e n t i n e w h o s e r e a d y dissolution a f f e c t s a n a l y t i c a l results. In t h e e v a l u a t i o n of m a r g i n a l deposits, b u t also in t h e c o n t e x t of some o t h e r r e s e a r c h p r o g r a m m e s , it is of i m p o r t a n c e t h a t t h e a b u n d a n c e of s u l p h i d e nickel r e c o v e r a b l e t h r o u g h c o n c e n t r a t i o n processes b e p r o p e r l y d e t e r m i n e d . T h u s it w a s essential to develop a m e t h o d w h i c h allows t h e selective assaying of nickel f r o m nickel ores in t h e p r e s e n c e of d i v e r s silicate combinations. In t h e l i t e r a t u r e , s e v e r a l selective dissolution m e t h o d s a r e r e p o r t e d dealing w i t h t h e d e t e r m i n a t i o n of s u l p h i d e s in t h e p r e s e n c e of silicates. M e n t i o n m a y be m a d e of t h e b r o m i - 80 Urho Penttinen, Veikko Palosaari and Tuomo Siura Table 1. Nickel dissolved from olivine in brominated water leach as a function of the sulphur content in the sample. S °/o Percentace of Ni dissolved from the total Ni in olivine 4 12 20 29 26 72 89 94 p a r t i a l dissolution of silicates. T h e w a t e r solution of s e r p e n t i n e s h o w s an a l k a l i n e r e action, a n d so t h e n i c k e l p r i m a r i l y dissolved b y b r o m i n e m a y p r e c i p i t a t e and go u n d e tected in t h e analyses. T h e d r a w b a c k to m e t h o d of K a t s n e l s o n is t h e v i g o r o u s r e a c t i o n of some m i n e r a l s d u r i n g dissolution. T h e s e u n f a v o u r a b l e e f f e c t s a r e listed in Tables 2 a n d 4. T a b l e 1 d e m o n s t r a t e s t h e dissolution of olivine in b r o m i n a t e d w a t e r f r o m s a m p l e s containing pyrite. n a t e d w a t e r leach ( C z a m a n s k e a n d I n g a m e l l s 1970, H ä k l i 1971), t h e dissolution in b r o m i nated water and carbon tetrachloride (Karap e t j a n 1968), t h e use of h y d r o g e n p e r o x i d e a n d a m m o n i u m c i t r a t e (Katsnelson a n d Osip o v a 1960), t h e h y d r o g e n p e r o x i d e a n d a s corbic acid leach (Lynch 1971) a n d c h l o r i n a t ing r o a s t (Moss et al. 1961 a n d 1967). All t h e s e methods have certain disadvantages. The c h l o r i n a t i n g r o a s t is slow a n d t h u s ill-suited to e v e r y d a y practice. I n t h e a p p l i c a t i o n s of m e t h o d s b y C z a m a n s k e , Häkli, K a t s n e l s o n a n d L y n c h t h e acidity of t h e solution d e p e n d s on t h e a m o u n t of s u l p h i d e s p r e s e n t . The d e v e l o p m e n t of s u l p h u r i c acid in s a m p l e s c o n t a i n i n g a b u n d a n t s u l p h i d e s m a y lead to In o u r s e a r c h f o r a s u i t a b l e m e t h o d for t h e selective dissolution of geological samples, w e paid p a r t i c u l a r a t t e n t i o n to t h e b r o m i n e m e t h a n o l m e t h o d t h a t K o r a k a s (1962) u s e d to leach sulphides, a n d K r a f t a n d F i s h e r (1963) m e t a l l i c i r o n f r o m m e t a l l u r g i c a l p r o ducts. F i l i p p o v a et al. (1973) h a v e s t u d i e d t h e solubility of synthesized p y r r h o t i t e , p e n t landite, h e a z l e w o o d i t e and millerite in b r o m i n e - m e t h a n o l a n d o t h e r solvents. Sen G u p t a a n d C h o w d h u r y (1974) applied b r o m i n e - m e t h a n o l digestion to t h e d e t e r m i n a t i o n b y A A S of s u l p h i d e nickel a n d cobalt in c h o n d r i t i c m e t e o r i t e s in t h e p r e s e n c e of Table 2. The dissolution of nickel in brominated water leach from ultramafic samples, and the pH in the solution. Ni, ppm Sample Serpentinite Vuonos Serpentinite Vuonos Ni tailings Kylmäkoski mine Peridot'ite Kotalahti mine Serpentinite Hitura mine Serpentinite Outokumpu Lateritic Ni ore Larymna, Greece Ni 2 /NiiX100 °/o S pH 483 25 0.35 6.0 2000 2080 104 1.2 2.6 1620 1230 76 1.2 2.4 1300 15 0.13 7.1 4390 3730 1.1 3.8 508 6 1.2 0.09 7.0 181000 319 0.2 0.08 5.7 1 2 1960 1.2 85 1. total nickel; HNO3, HF and HCIO4 used. 2. nickel dissolved in brominated water. Selective dissolution and determination of sulphides in nickel o r e s . . . 81 Table 3 Brominated water leach at constant pH. Sample 2000 mg, 2 ml bromine, 20 ml water at 70°C pH kept constant by means of titration automatics. Sample Leaching time pH 60 60 60 60 60 60 60 60 60 60 60 60 4.0 5.0 6.0 4.0 5.0 6.0 4.0 5.0 6.0 4.0 5.0 6.0 Peridotite Kotalahti mine Lateritic Ni ore Larymna, Greece Serpentinite Hitura mine Serpentinite Vuonos dis. coexisting m e t a l a n d silicate-oxide phases. As f a r as w e k n o w , h o w e v e r , b r o m i n e m e t h a n o l leach h a s n o t b e e n applied to t h e analysis of geological samples, of w h i c h low g r a d e u l t r a m a f i c nickel m i n e r a l i s a t i o n s , in p a r t i c u l a r , c o n s t i t u t e a d i f f i c u l t , y e t i n t e r e s t i n g topic. F o r m a n y nickel a n d c o p p e r m i n e r a l s of nickel ores t h e b e h a v i o u r d u r i n g b r o m i n e m e t h a n o l t r e a t m e n t is not r e p o r t e d in l i t e r a ture. Bromine-methanol dissolution T h e dissolution w a s c a r r i e d out as f o l l o w s : A d d 80 m l m e t h a n o l p.a. a n d 5 m l b r o m i n e into a 500 e r l e n m a y e r f l a s k f i t t e d w i t h a glass Table 4. The dissolution of serpentinite (Outokumpu) in the brominated water as a fuction of the concentration of H2SO4. For the brominated water leach, 5 ml water, 0.5 ml bromine and 1-n sulphuric acid were used. After the leach, the solution was diluted to 100 ml. mlH 2 S0 4 , 1-n 0.5 1.0 2.5 10.0 Nidis./Nitot. MgOdis./MgOtot. < 1 < 1 1 16 46 1.4 1.8 2.9 5.8 14 X 100 6.6 6.5 6.2 4.4 1.7 Ni, «/o tot. 0.028 0.13 0.014 0.13 0.006 0.13 0.069 18.1 0.030 18.1 0.010 18.1 0.15 0.22 0.092 0.22 0.047 0.22 0.14 0.20 0.072 0.20 0.053 0.20 Nidis./Nitot. X 100 22 11 4.6 0.4 0.2 0.1 68 42 21 70 36 27 dis. tot. MgOdis-/ MgOtot. X 100 0.85 0.59 0.50 0.09 0.06 0.05 4.1 0.8 1.8 0.98 2.2 0.67 28.4 28.4 28.4 1.9 1.9 1.9 35.4 35.4 35.4 35.7 35.7 35.7 3.0 2.1 1.8 4.7 3.2 2.6 12 2.3 5.1 2.7 6.2 1.9 MgO, »/o stopper. S t i r u n t i l t h e b r o m i n e goes i n t o solution. Cool to r o o m t e m p e r a t u r e b e f o r e s t a r t i n g dissolution, to p r e v e n t t h e s t o p p e r f r o m o p e n i n g d u r i n g s h a k i n g . W e i g h into t h e e r l e n m a y e r f l a s k 1 g of s a m p l e p u l v e r i s e d to t h e f i n e n e s s r e q u i r e d b y analysis. S h a k e g e n t l y f o r 1 h o u r in a s h a k e r . F i l t e r in a f u m e cupboard through a white-band filter b y using f i l t e r p a p e r mass. W a s h r e s i d u e a n d f i l t e r p a p e r six times w i t h m e t h a n o l . Add 10 m l n i t r i c acid to t h e f i l t r a t e a n d e v a p o r a t e c a r e f u l l y to dryness. A d d 1 m l conc. h y d r o chloric acid a n d e v a p o r a t e to d r y n e s s . S u b s e q u e n t l y , add 5 m l h y d r o c h l o r i c acid a n d a little w a t e r , a n d dissolve b y a p p l y i n g heat. Cool a n d d i l u t e to 100 m l in a v o l u m e t r i c flask. T h e m e t a l s a r e d e t e r m i n e d b y A A S . It is not r e c o m m e n d e d to p r e p a r e a stock of b r o m i n e - m e t h a n o l solution, since t h e dissolving of b r o m i n e l i b e r a t e s so m u c h h e a t t h a t t h e m i x t u r e m a y s t a r t to boil. Leaching tests X 100 T h e solubility of v a r i o u s m i n e r a l s w a s tested b y s u b j e c t i n g t h e m to t h e b r o m i n e m e t h a n o l leach as d e s c r i b e d above. In a d d i tion to t h e c o m m o n n i c k e l m i n e r a l s , t h e 82 Urho Penttinen, Veikko Palosaari and Tuomo c o p p e r m i n e r a l s t h a t a r e u s u a l l y associated w i t h nickel ores, as w e l l as some sulphides, w e r e also tested. T h e m i n e r a l s w e r e : p e n t landite, (Fe, Ni) 9 S 8 , p y r r h o t i t e (christal s t r u c t u r e not d e t e r m i n e d ) , m i l l e r i t e NiS, g e r s d o r f f i t e (Ni, Co, Fe)AsS, niccolite NiAs, violarite (Ni, Fe) 3 S 4 , chalcopyrite, cubanite CuFe.,S 3 , p y r i t e a r s e n o p y r i t e F e A s S a n d s p h a l e r i t e . Most of t h e m i n e r a l s were extracted without separation from heavily m i n e r a l i s e d samples. U n f o r t u n a t e l y , no suitable s a m p l e s of b r a v o i t e w e r e available. T h e v i o l a r i t e s a m p l e c o n t a i n e d a b u n d a n t pyrite, a n d t h e c u b a n i t e specimen chalcopyrite. In t h e leaching test, t h e p e r c e n t a g e of m e t a l dissolved w a s c a l c u l a t e d on t h e basis of t h e c o n c e n t r a t i o n in t h e original sample, a n d in r e s i d u e or solution, or both. T h e dissolution of nickel and c o p p e r w a s s t u d i e d f r o m v i o l a r i t e and c u b a n i t e , respectively. F o r violarite, t h e r e s u l t s w e r e checked b y s u b m i t t i n g t h e r e s i d u e to microscopic e x a m i n ation. F u r t h e r m o r e , t h e dissolution of nickel oxide, p r e p a r e d f r o m nickel a c e t a t e b y Siura roasting, w a s tested. Finally, c o m p a r a t i v e leaching w a s p e r f o r m e d by using m e t h o d s b y Häkli, K a t s n e l s o n a n d L y n c h , in a d d i t i o n to t h a t of b r o m i n e - m e t h a n o l (Table 6). The r e s i d u e of t h e b r o m i n e - m e t h a n o l l e a c h w a s s t u d i e d microscopically a n d it w a s n o t e d t h a t , a p a r t f r o m some inclusions and p y r i t e grains, all t h e s u l p h i d e s h a d g o n e into solution. Discussion In t h e leach of a 1 g s a m p l e in a c c o r d a n c e with a n a l y t i c a l instructions, pentlandite, p y r r h o t i t e , millerite, niccolite, chalcopyrite, c u b a n i t e and s p h a l e r i t e dissolved c o m p l e t e l y in b r o m i n e - m e t h a n o l . T h e b e h a v i o u r of pyrite, g e r s d o r f f i t e a n d a r s e n o p y r i t e , as w e l l as nickel oxide, n o n e of w h i c h a r e r e a d i l y soluble, a r e compiled in T a b l e 5. To b r i n g a r s e n o p y r i t e and g e r s d o r f f i t e c o m p l e t e l y or n e a r l y into solution t h e s a m p l e s h a d to b e s h a k e n f o r 4 h o u r s a n d t h e a m o u n t of g e r s d o r f f i t e r e d u c e d to 0.1—0.25 g. P y r i t e Table 5. Leaching of minerals not readily attacked by bromine-methanol. Weight of sample, g Leaching time, h NiO 1.0 1 Pyrite 1.0 0.5 0.25 0.125 0.25 0.125 1 1 1 1 4 4 Gersdorffite 1.0 0.5 0.25 0.25 0.125 0.125 0.125 1 1 2 4 1 2 4 1.0 0.5 1.0 0.25 0.125 1 1 4 4 4 Mineral Arsenopyrite Dissolve Cu Ni in °/o Co Fe 0.1 6.8 8.1 7.1 7.5 15.1 12.8 94 95 94 71 74 84 91 78 95 94 57 58 70 80 63 88 95 66 66 77 86 86 86 88 80 87 93 102 101 Table 6. Selective leach by different methods. Legend: 1. dissolved 2. dissolved/total X 100 Concentration: Ni ppm, Mg, Fe and S °/o. For the method of Katsnelson the determinations are by AAS. Total analysis Bromine-methanol Sample no. Ni 1 2 1940 22.8 5.5 1.3 1860 96 0.24 2190 24.4 4.9 0.50 1710 78 0.54 1300 18.8 8.8 0.25 Mg 2 97 2.8 12 2010 7.8 1530 70 3.4 14 1.6 8.5 489 38 3.2 863 54 0.23 1.7 1160 72 4050 73 1.8 7.9 3420 62 1.1 1350 70 1.1 4.8 1880 2.2 1170 53 1.9 343 26 0.092 0.5 195 15 1610 13.8 10.2 1.4 967 60 0.047 0.3 5550 22.8 11.7 1.3 4410 79 Fe S 1 Ni 1 1 Mg Mg Ni 2 Ni 2 Ni 1 2 2 1 < Bromine-water H^OO-ascorbic acid H 3 O 2 - citrate Mg GO <I> re p. Mg 2 1 2 pH 104 3.3 14 2.3 to 346 16 1.1 4.5 5.5 p. a> 17 13 1 0.42 2.2 6.3 2.1 15 1230 76 2.0 14 2.2 5.0 22 3370 61 3.8 17 4.2 0.005 0.24 20 6.9 1 o B 1 2 3 4 5 6 7 Serpentinite Vuonos Serpentinite Outokumpu Peridotite Kotalahti mine Ni tailings Kylmäkoski mine Serpentinite Hitura mine Lateritic Ni ore Laryma, Greece Olivine 188000 1.2 5.3 0.10 278 1.1 4.8 0.1 0.039 3.3 1620 0.9 0.095 7.9 9470 5.0 0.10 8.3 5 0.4 0.092 0.3 9 3p. •a cr 720 30.8 5.6 4 0.6 0.006 0.02 36 0.26 0.8 3 m CO 84 Urho Penttinen, Veikko Palosaari and Tuomo t u r n e d out to b e s u r p r i s i n g l y d i f f i c u l t to dissolve. D u r i n g t h e n o r m a l leach of 1 h o u r , only 7 or 8 °/o of t h e m i n e r a l goes into solution. E x t e n d e d leach does not h e l p m a t e r i a l l y . W i t h t h e m e t h o d of K a t s n e l s o n a n d Osipova, 75 to 90 °/o of t h e p y r i t e in a 1 g s a m p l e w e n t into solution w i t h i n 2 to 4 h o u r s . In practice, nickel oxide is insoluble in b r o m i n e - m e t h a n o l . T h e o u t - c o m e s of d i f f e r e n t m e t h o d s a r e compiled in T a b l e 6. T h e y s h o w t h a t , as f a r as nickel a n a l y s e s a r e concerned, t h e r e s u l t s given by the bromine-methanol and Lynch's m e t h o d s a r e closest to each o t h e r . T h e m e t h o d of K a t s n e l s o n g a v e a v e r a g e a b u n d a n c e s 25 °/o l o w e r t h a n those o b t a i n e d b y t h e b r o m i n e m e t h a n o l m e t h o d . B r o m i n a t e d - w a t e r leach failed in cases w h e r e p H > 6. Less m a g n e s i u m w a s dissolved in t h e b r o m i n e - m e t h a n o l leach t h a n in t h e m e t h o d s e m p l o y e d b y K a t s n e l s o n and L y n c h . Nevertheless, some Siura m a g n e s i u m w e n t into solution, f r o m s e r p e n t i n e a n d oxides. especially T h e r e p e a t a b i l i t y of t h e b r o m i n e - m e t h a n o l method was studied by submitting two s a m p l e s to 10 leaches each. T h e r e s u l t s w e r e as f o l l o w s : S e r p e n t i n e f r o m V u o n o s : T h e solution c o n t a i n e d 0.299 °/o Mg, SD = ± 0.057 c o e f f i cient of v a r i a t i o n 19.1 %> a n d 1850 p p m Ni, SD = ± 17.4 p p m , coefficient of v a r i a t i o n 0.95 % . S e r p e n t i n e f r o m O u t o k u m p u : T h e solution c o n t a i n e d 0.583 % Mg, SD = ± 0.039 %>, coefficient of v a r i a t i o n 6.69 °/o a n d 1730 p p m Ni, SD = ± 16.7 p p m , coefficient of v a r i a t i o n 0.96 °/o. Acknowledgement — The authors are indebted to the Outokumpu Company for permission to publish this paper. References Czamanske, G. K. and Ingamells, C. O. (1970) Selective chemical dissolution of sulphide minerals: A method of mineral separation. Am. Min. 55: 2131—2134. Filippova, N. A., Samokhvalova, L. G., Suminova, R. I., Slavskaya, A. I. and Bogoslovskaya, E. I. (1973). Phase analysis of nickel compounds in the sulfiding products of oxidized nickel ores. Ind. Lab. 39: 718—720. Häkli, T. A. (1971) Silicate nickel and its application to the exploration of nickel ores. Bull. Geol. Soc. Finland 43: 247—263. Karapetjan, JE. T. (1968) Opredelenie sul'fidnogo nikelja v sul'fidnyh rudah i kontsentratah. Zav. Lab. 34. 939 p. Katsnelson, E. M. and Osipova JE. JA. (1960) Usoversenstvovannyi metod opredelenija sul'fidnogo nikelja. Obogastsenie rud, n:o 4: 24— 26. Korakas, N. (1962) Magnetite formation during copper matte converting. Inst. Min. Met. Trans. 72 (1): 35—53. Kraft, G. and Fisher, J. (1963) Die Bestimmung von metallischem, zweivertigem und dreivertigem Eisen nebeneinander in Eisenhüttenprodukten. Z. Anal. Chem. 197: 217—221. Lynch, J. J. (1971) The determination of copper, nickel and cobalt in rocks by atomic absorption spectrometry using a cold leach. Geochemical Exploration Spec. 11: 313—314. Moss, A. A., Hey, M. H. and Bothwell, D. J. (1961) Methods for the chemical analysis of meteorites. Min. Mag. 32: 802—816. Moss, A. A., Hey, M. H., Elliot, C. J. and Eston, A. J. (1967) Methods for the chemical analysis of meteorites. Min. Mag. 36: 101—119. Sen Gupta, N. R. and Chowdhury, A. N. (1974). Determination of nickel and cobalt in chondritic meteorites by atomic absorption spectrophotometry. Z. Anal. Chem., 268. 32 p. Manuscript received January 13, 1977
© Copyright 2026 Paperzz