ADecisionTreeAnalysisoftheTransferStudent EmmaGunu,MS ResearchAnalyst RobertMRoe,PhD ExecutiveDirectorofInstitutionalResearchandPlanning Overview • MotivationforAnalyses • AnalysesandResults • Descriptive • LogisticRegression • DecisionTreeAnalysis • 1st YearRetention • 6yearGraduationRate • Impactof2yearDegreeonPerformanceat CMU • Conclusion 2 OfficeofInstitutionalResearch Motivation • CMUtypicallyenrollsbetween1400and1500 transferstudentseachyear • Constitutesnearly25%ofallnewstudents • Inthepastusedallnewtransfersascohort– ignoringnumberoftransfercredits • GiventhelimitedresourcesoftheOfficeof StudentSuccess,canweidentifyspecificgroups foroutreach(intervention)? 3 OfficeofInstitutionalResearch EntryCredentialsbyClass 3-year(2011-2013)mean%countbyClassof Entry 60% Mean Transferhours byClassofEntry (2006-2014) 50% 80 40% 60 30% 40 50.3% 20% 25.9% 21.2% 10% 0% Freshman(<26hrs) Sophomore(2756hrs) Junior(57-86hrs) 20 0 66.0 17.1 Freshman Mean TransferGPA 4.00 3.50 3.00 2.50 2.00 2.90 3.04 Fresh Soph 3.24 Junior 4 OfficeofInstitutionalResearch 41.1 Sophomore Junior FirstYearPerformance %Persistinginto 2ndYear byClassofEntry FirstTermGPAbyEntryLevel 4.00 3.50 3.00 2.50 2.00 2.46 Fresh 5 2.76 Soph 3.02 Junior 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 70.5% 77.5% 84.3% Fresh Soph Junior OfficeofInstitutionalResearch LOESSofPersistencebyTransferHours 0255075100 125 6 OfficeofInstitutionalResearch GraduationbyLevelofEntry Last3-yearmean%GraduatinginYearbyClassofEntry 90% 80% Freshman 70% 60% Sophomore 50% Junior 40% 30% 20% 10% 0% 1stYear 7 2nd year 3rdYear 4thYear 5thYear OfficeofInstitutionalResearch 6thYear Impactof2YearDegreeAtCC • Nextwelookedattheimpactofobtaininga2year degreeonpersistence,graduation,andGPA 8 OfficeofInstitutionalResearch Impactof2yearDegree 90% 80% 70% 10% 75.8% 58.8% 20% 43.8% 30% 67.2% 40% 74.6% 50% 85.7% 60% 0% Pers2 Grad4 Degree 9 NoDegree OfficeofInstitutionalResearch Grad6 Graduationin4yrs Graduated within4Years NoAssociate Degree No Yes 1006 (56.2%) 784 (43.8%) 190 389 (67.2%) AssociateDegree (32.8%) χ2 =95.714,p<.001 However, persistenceandgraduation areconfounded with number oftransferhours. 10 OfficeofInstitutionalResearch Logistic Regression- Graduation in 4yrs TRANHRS Prior_2yr_Degree Constant B S.E. df Sig. Exp(B) 0.028 0.003 1 0.000 1.029 0.28 0.122 1 0.021 1.323 -1.197 0.106 1 0.000 0.302 a. Variable(s) entered on step 1: TRANHRS, Prior_2yr_Degree. OfficeofInstitutionalResearch 11 Results • Theimpactofa2yeardegreeonpersistence tosecondyearandgraduationin4or6years wassignificantbeyondtheimpactofnumber oftransferhours 12 OfficeofInstitutionalResearch BestWaytoClassifyStudentsWhoare atRisk? • Performancevariesbytransferhoursbutwhat aboutotherfactors? • Coulduselogisticregressiontodeterminewhich factorsarepredictive • However,thisisnotusefulindeterminingwhich groupsofstudentsareatrisk 13 OfficeofInstitutionalResearch FactorsThatLikelyImpactPersistence • Variables – Fullorparttimestudent – TransferGPA – Totaltransferhours – TransferCollegeYear – LowIncomeStatus – FirstGenerationStatus 14 OfficeofInstitutionalResearch Logistic- Stepwise Variables in the Equation Step 1 a Step 2 b TRANGPA B .796 Constant -1.123 Step 3 Step 4 d .161 df Sig. Exp(B) .000 2.216 48.490 1 .000 .325 .710 .055 166.387 1 .000 2.034 TRANHRS .011 .001 57.435 1 .000 1.011 -1.294 .163 62.740 1 .000 .274 FULLPART .739 .128 33.566 1 .000 2.095 TRANGPA .702 .055 161.845 1 .000 2.017 TRANHRS .012 .001 68.157 1 .000 1.012 Constant -2.020 .207 94.866 1 .000 .133 LOWINC -.324 .067 23.659 1 .000 .723 FULLPART .733 .128 32.890 1 .000 2.081 TRANGPA .700 .055 160.898 1 .000 2.014 TRANHRS .013 .001 75.412 1 .000 1.013 -1.968 .208 89.593 1 .000 .140 Constant a. Variable(s) entered on step 1: TRANGPA. b. Variable(s) entered on step 2: TRANHRS. c. Variable(s) entered on step 3: FULLPART. d. Variable(s) entered on step 4: LOWINC. 15 1 TRANGPA Constant c S.E. Wald .054 217.894 OfficeofInstitutionalResearch DecisionTreesforOutreach 16 OfficeofInstitutionalResearch DecisionTreeModels • Severaltypesofdecisiontreemodels • HerewechosetheChi-squareAutomaticInteraction Detection(CHAID)ModeloverClassificationand RegressionTrees(CRT) • WithCRT,GPAmightsplitseveraltimestoberefined enoughtobepredictive 17 OfficeofInstitutionalResearch DecisionTreeModels • Thesemodelscanbeusedsimplytoclassifyaset ofdata(e.g.whatisthebestwaytoclassifyour transferstudentsintermsofretentionfactors) • Orcanbeusedforprediction(e.g.canweflag newtransferstudentswhoareatrisk(ornotat risk)forpersistence?) 18 OfficeofInstitutionalResearch CHAID • Theprocedurecreatestree-basedmodelsthat determinehowvariablesbestcombinetoexplain theoutcomeinagivendependentvariable • Dependentvariableisbinaryresponse–Retained vsNot • Predictorvariablesareanycombinationof variabletypes(continuousorcategorical) 19 OfficeofInstitutionalResearch Method • Startbyselectingasubsetofdatafortraining • Usemodeltopredictanewsetofdata • Herewechoseasubsetof70%ofthedataandfit totheremaining30% • Checkmisclassificationrateandstandarderrorfor predictability 20 OfficeofInstitutionalResearch CHAIDAnalysisForFirstYearRetention • Startbyclassifyingtodetermineifevenpossible • Ifyes,buildpredictionmodel • Inputvariables – – – – – – Fullorparttimestudent TransferGPA Totaltransferhours TransferCollegeYear LowIncomeStatus FirstGenerationStatus • AllwereSelectedbyModel 21 OfficeofInstitutionalResearch Persistto2 nd Year <=2.410 22 (2.41-3.06] (3.06-3.35] OfficeofInstitutionalResearch (3.35-3.73] >3.73 23 OfficeofInstitutionalResearch 24 OfficeofInstitutionalResearch WhichNodesareImportant? Gains for Nodes Node 5 25 30 28 31 23 26 22 16 27 8 29 32 17 12 24 20 21 9 18 6 25 Training Index 115.1% 114.5% 114.2% 110.8% 104.6% 103.9% 103.2% 102.5% 101.0% 98.6% 98.0% 95.5% 93.3% 89.1% 88.4% 86.7% 85.2% 85.2% 80.4% 72.5% 70.0% Node5:TransferGPA>3.73 90.1%Persistto2nd year Node6:TransferGPA<=2.41 TransferHrs <=23, 54.8%Persistto2nd year OfficeofInstitutionalResearch ModelEvaluation Classification Predicted Sample Training Test Not Persist2 Persist2 Overall Percentage Not Persist2 Persist2 Overall Percentage Percent Not Persist2 Persist2 Correct 0 1242 0.0% 0 4469 100.0% 0.0% 100.0% 78.3% 0 563 0.0% 0 1917 100.0% 0.0% 100.0% 77.3% Risk Sample Estimate Std. Error Training .217 .005 Test .227 .008 Growing Method: CHAID Dependent Variable: Persisted to 2nd Year 26 OfficeofInstitutionalResearch SummaryofPersistenceDecisionTree • TransferGPAismostpredictive • OtherpredictivefactorsvarybytransferGPA • Forclarityandeaseofunderstandingforthose whousetheinformation,wecreatedthe followingtables: 27 OfficeofInstitutionalResearch RetentionatRiskTable TransferCredits TransferGPA 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 28 >60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 6.2% 17.4% 1.5% 10.5% 5.0% Lowincomein this rangeat higherrisk. 18.3% Lowincomeinthis rangeathigherrisk. FirstGenerationin this rangeathigher risk. 3.5% 3.3% 4.5% DecisionTreeAnalysisFor6Year GraduationRate • Inputvariables – Fullorparttimestudent – TransferGPA – Totaltransferhours – TransferCollegeYear – LowIncomeStatus,FirstGenerationStatus • Allvariablesexceptfullvsparttimewere selectedbymodel 29 OfficeofInstitutionalResearch 6YearGraduation <=2.31 2.30-2.69 30 2.69-2.99 2.99-3.29 OfficeofInstitutionalResearch <=3.29 Summaryof6YearGraduation DecisionTree • ForlowtransferGPA(<=2.3),1st generationstatus atgreaterrisk • ForsecondlowestGPA(2.3-2.69],transfercredit hoursand2vs4yearimportant • FormiddleGPA(2.69-3.29],2vs4yearand transfercredithoursimportant • ForhighestGPA(>3.29)transferhours,2vs4year, andlowincomeimportant 31 OfficeofInstitutionalResearch GradatRiskTable TransferCredits TransferGPA 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 >60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 10.0% 7.9% 15.0% First Generationin this rangeat higherrisk. CCtransferin this rangeat higherrisk. CCinthis rangeat higherrisk. OfficeofInstitutionalResearch 32 Summary • Themorerefinedassessmentoftransferstudents revealedsomeinterestingfindings • Usingdecisiontreeanalysesontransferdata,we areabletoidentifyveryspecificgroupsatrisk (andgroupslikelytosucceed) • Wehavepresentedtheseresultstotheretention subcommittee,strategicenrollmentgroup,andto thevicepresidentofenrollmentservices • Questions? 33 OfficeofInstitutionalResearch
© Copyright 2026 Paperzz