Potentially useful formulas: Math 256 y′′ + p(t) y′ + q(t)y = g(t) y 2 = u y1 y = c1 y1 + c2 y2 + y p y1u′′ + (2 y1′ + py1) u′ = 0 y p = u1 y1 + u2 y2 , u1′ = W1g Wg , u2′ = 2 , W = W W y′′′ + p(t) y′′ + q(t) y′ + r(t)y = g(t) y p = u1 y1 + u2 y2 + u3 y 3 W= y1 y2 y3 y1′ y2′ y3′ dx = − cos(x) + C , y2 y1′ y2′ u1′ = , W1 = W1g , W u2′ = 0 y2 y3 0 y2′ y3′ W2 g , W , W2 = 1 y2′′ y3′′ ∫ cos(x) 0 y2 , W1 = 1 y2′ y1 0 , W2 = y1′ 1 y = c1 y1 + c2 y2 + c3 y3 + y p y1′′ y2′′ y3′′ ∫ sin(x) y1 u3′ = W3 g , W y1 0 y3 y1′ 0 y3′ , W3 = y1′′ 1 y3′′ dx = sin(x) + C , ∫ tan(x)dx = ln sec(x) + C , y1 y2 0 y1′ y2′ 0 y1′′ y2′′ 1 ∫ cot(x) dx = − ln csc(x) + C ∫ sec(x)dx = ln sec(x) + tan( x) + C , ∫ csc(x)dx = ln csc(x) − cot(x) + C , ∫ sec(x)tan(x)dx = sec(x) + C , ∫ csc(x)cot(x)dx = − csc(x) + C , ∫ sec (x)dx = tan( x) + C , ∫ csc (x)dx = − cot(x) + C 2 1 2 1 ∫ sec (x)dx = 2 sec(x)tan( x) + 2 ln sec(x) + tan(x) + C 3 1 1 ∫ csc (x)dx = − 2 csc(x)cot(x) + 2 ln csc(x) − cot(x) + C 3 1 1 1 1 ∫ sin (x)dx = 2 x − 2 sin(x)cos(x) + C , ∫ cos (x)dx = 2 x + 2 sin(x)cos(x) + C ∫x ∫x 2 ∫e sin(x) dx = sin(x) − x cos(x) + C , ax sin(bx) dx = ∫ ln(x) 2 e ax (a sin(bx) − b cos(bx)) a2 + b2 dx = x ln(x) − x + C , cos(x) dx = cos(x) + x sin(x) + C +C, ∫x e ax ∫e ax dx = cos(bx) dx = e ax (a cos(bx) + b sin(bx)) 1 ( ax − 1) eax + C a2 a2 + b 2 +C
© Copyright 2026 Paperzz