The Erdos-Strauss conjecture The proof Jamel Ghannouchi To cite this version: Jamel Ghannouchi. The Erdos-Strauss conjecture The proof. Bulletin of Mathematical Sciences and Applications (www.bmsa.us), 2014, pp.4. <hal-01075686v4> HAL Id: hal-01075686 https://hal.archives-ouvertes.fr/hal-01075686v4 Submitted on 19 Jan 2015 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. The Erdos conjecture Jamel Ghanouchi [email protected] Abstract (MSC=11D04) In this document, we deal with the Erdos conjecture. Keywords : Erdos ; Conjecture. The proof The Erdos conjecture states that ∀n > 3 ∈ N, ∃x, y, z ∈ N| 4 1 1 1 = + + n x y z There will be no many calculus here, only formulas. 1 1 1 4 = + + 6k 3k 3k + 1 3k(3k + 1) 4 1 1 1 = + + 6k + 2 6k + 2 2k + 1 (2k + 1)(6k + 2) 1 1 1 4 = + + 6k + 3 6k + 3 2k + 2 (2k + 2)(2k + 1) 4 1 1 1 = + + 6k + 4 3k + 2 3k + 3 (3k + 3)(3k + 2) 1 1 1 4 = + + 6k + 5 6k + 5 2(k + 1) 2(k + 1)(6k + 5) And 1 + k+c = 1 b(6k+1)(k+c) (k+c)(4b−1)−(6k+1)b 1 (1 + k+c 1 b(6k+1) (k+c)(4b−1)−b(6k+1) 1 ) = (k + c)(4b − 1) − b(6k + 1) 1 (1 + ) k+c b(6k + 1) = = Thus 1 (k + c)(4b − 1) ( ) k+c b(6k + 1) 4b − 1 4 1 = − b(6k + 1) 6k + 1 b(6k + 1) 1 1 4 = + + 6k + 1 b(6k + 1) k + c 1 b(6k+1)(k+c) (k+c)(4b−1)−(6k+1)b b(6k+1)(k+c) We choose b, c such as (k+c)(4b−1)−(6k+1)b is a positive integer and it is always possible ! For example k=1⇒ 7b(1 + c) b(6k + 1)(k + c) = (k + c)(4b − 1) − (6k + 1)b (1 + c)(4b − 1) − 7b 7b(1 + c) 4bc − 3b − c − 1 c = 1, b = 3 ⇒ 4bc − 3b − c − 1 = 1 1 1 1 4 ⇒ = + + 7 7 2 14 b(6k + 1)(k + c) 13b(2 + c) k=2⇒ = (k + c)(4b − 1) − (6k + 1)b (2 + c)(4b − 1) − 13b = 13b(2 + c) 4bc − 5b − c − 2 c = 2, b = 2 ⇒ 4bc − 5b − c − 2 = 2 4 1 1 1 ⇒ = + + 13 26 4 52 b(6k + 1)(k + c) 19b(3 + c) k=3⇒ = (k + c)(4b − 1) − (6k + 1)b (3 + c)(4b − 1) − 19b = 19b(3 + c) 4bc − 7b − c − 3 c = 3, b = 6 ⇒ 4bc − 7b − c − 3 = 1 4 1 1 1 ⇒ = + + 19 114 6 684 Etc... Untill infinity, it means that it is always possible to have three egyptian fractions ! = Conclusion By series of formulas, we have proved the Schinzel conjecture. 2 Références [1] Yamamoto Koichi, On the diophantine equation 4/n = 1/c+1/y +1/z Memoirs of the Faculty of Science , (1965). 3
© Copyright 2026 Paperzz