The Erdos-Strauss conjecture The proof

The Erdos-Strauss conjecture The proof
Jamel Ghannouchi
To cite this version:
Jamel Ghannouchi. The Erdos-Strauss conjecture The proof. Bulletin of Mathematical Sciences
and Applications (www.bmsa.us), 2014, pp.4. <hal-01075686v4>
HAL Id: hal-01075686
https://hal.archives-ouvertes.fr/hal-01075686v4
Submitted on 19 Jan 2015
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
The Erdos conjecture
Jamel Ghanouchi
[email protected]
Abstract
(MSC=11D04) In this document, we deal with the Erdos conjecture.
Keywords : Erdos ; Conjecture.
The proof
The Erdos conjecture states that
∀n > 3 ∈ N, ∃x, y, z ∈ N|
4
1 1 1
= + +
n
x y z
There will be no many calculus here, only formulas.
1
1
1
4
=
+
+
6k
3k 3k + 1 3k(3k + 1)
4
1
1
1
=
+
+
6k + 2
6k + 2 2k + 1 (2k + 1)(6k + 2)
1
1
1
4
=
+
+
6k + 3
6k + 3 2k + 2 (2k + 2)(2k + 1)
4
1
1
1
=
+
+
6k + 4
3k + 2 3k + 3 (3k + 3)(3k + 2)
1
1
1
4
=
+
+
6k + 5
6k + 5 2(k + 1) 2(k + 1)(6k + 5)
And
1
+
k+c
=
1
b(6k+1)(k+c)
(k+c)(4b−1)−(6k+1)b
1
(1 +
k+c
1
b(6k+1)
(k+c)(4b−1)−b(6k+1)
1
)
=
(k + c)(4b − 1) − b(6k + 1)
1
(1 +
)
k+c
b(6k + 1)
=
=
Thus
1 (k + c)(4b − 1)
(
)
k+c
b(6k + 1)
4b − 1
4
1
=
−
b(6k + 1)
6k + 1 b(6k + 1)
1
1
4
=
+
+
6k + 1
b(6k + 1) k + c
1
b(6k+1)(k+c)
(k+c)(4b−1)−(6k+1)b
b(6k+1)(k+c)
We choose b, c such as (k+c)(4b−1)−(6k+1)b
is a positive integer and it is always
possible ! For example
k=1⇒
7b(1 + c)
b(6k + 1)(k + c)
=
(k + c)(4b − 1) − (6k + 1)b
(1 + c)(4b − 1) − 7b
7b(1 + c)
4bc − 3b − c − 1
c = 1, b = 3 ⇒ 4bc − 3b − c − 1 = 1
1 1
1
4
⇒ = + +
7
7 2 14
b(6k + 1)(k + c)
13b(2 + c)
k=2⇒
=
(k + c)(4b − 1) − (6k + 1)b
(2 + c)(4b − 1) − 13b
=
13b(2 + c)
4bc − 5b − c − 2
c = 2, b = 2 ⇒ 4bc − 5b − c − 2 = 2
4
1
1
1
⇒
=
+ +
13
26 4 52
b(6k + 1)(k + c)
19b(3 + c)
k=3⇒
=
(k + c)(4b − 1) − (6k + 1)b
(3 + c)(4b − 1) − 19b
=
19b(3 + c)
4bc − 7b − c − 3
c = 3, b = 6 ⇒ 4bc − 7b − c − 3 = 1
4
1
1
1
⇒
=
+ +
19
114 6 684
Etc... Untill infinity, it means that it is always possible to have three egyptian fractions !
=
Conclusion
By series of formulas, we have proved the Schinzel conjecture.
2
Références
[1] Yamamoto Koichi, On the diophantine equation 4/n = 1/c+1/y +1/z
Memoirs of the Faculty of Science , (1965).
3